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Abstract

We study a dynamic model of collective action in which agents are connected by a social network.
Our approach highlights the importance of communication in this problem and conceives that
network – which is continuously evolving – as providing the channel through which agents not only
interact but also communicate. We consider two alternative scenarios that differ only on how agents
form their expectations: while in the “benchmark” context agents are completely informed, in the
alternative one their expectations are formed through a combination of local observation and social
learning à la DeGroot. We completely characterize the long-run behavior of the system in both
cases and show that only in the latter scenario (arguably the most realistic) there is a significant
long-run probability that agents eventually achieve collective action within a meaningful time scale.
We suggest that this sheds light on the puzzle of how large populations can coordinate on globally
desired outcomes. Finally, we illustrate the empirical potential of the model by showing that it can
be efficiently estimated for the Egyptian Arab Spring using large-scale cross-sectional data from
Twitter. This estimation exercise also suggests that, in this instance, network-based social learning
played a leading role in the process underlying collective action.
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1. Introduction
Much of the interaction taking place in socio-economic environments is mediated by the social

networks that connect their agents for a wide range of different purposes. Their connections not only
underlie some of the payoffs these agents obtain but also serve them to communicate when facing
problems of collective action such as addressing social emergencies, staging peaceful demonstrations,
or even igniting violent riots. In modern societies, a large fraction of that social interaction is
carried out virtually through online social media such as Facebook, Twitter/X, VK, or Weibo
(cf. Acemoglu et al., 2018; Enikolopov et al., 2020; Qin et al., 2021). This renders it feasible for
researchers to collect massive data on the operation of large-scale social networks, in turn opening
up rich possibilities for an integrated theoretical and empirical study of collective-action problems
in large populations. Developing theoretical and empirical methods that can be used to handle and
better understand this type of data is, in a nutshell, the main objective of this paper.

The existing literature, both theoretical and empirical (see, e.g., Chwe (2000) and Cardoso et al.
(2019)), has highlighted a key consideration underlying whether collective action succeeds or fails
within different environments is how information, communication, and coordination interplay in
each of them. To shed light on this interplay, we shall argue that it is useful to account explicitly
for the ways in which individuals gather information and communicate with others. And when
the population is large, the assumption that such information and communication are locally con-
strained by the social network is not only more realistic than the alternative common assumption of
complete (or global) information, it also leads, somewhat paradoxically, to a more plausible model
of how sizable populations tackle the severe coordination challenge posed by large-scale collective
action.1

Our approach to the question combines, and integrates, a theoretical and an empirical analysis
of the problem. On the theoretical front, we model the situation dynamically as a population game
played on an evolving network in which each agent adjusts over time both her action (say, whether to
join or not collective action) and her connections/links in the social network. Those adjustments are
taken to depend on what payoff-relevant features of the state of the system the agent observes and
how she forms beliefs about those features she does not observe. More specifically, the assumptions
we make in our model are:

(a) the agents accurately know the actions chosen by their neighbors in the social network;
(b) they hold beliefs, possibly inaccurate, on the average action chosen by the population.

In our model, (a) and (b) encompass all the considerations that are payoff relevant in the two
different scenarios we consider. For both of them, point (a) applies, i.e., the precise local observation
holds, as mediated by the currently prevailing network. However, the two scenarios significantly
differ in terms of how accurately agents form their beliefs about the “global” characteristics of the
prevailing situation – most importantly, about the overall support given to collective action. The
following two alternative assumptions capture, in a stylized manner, the contrast between them:

• The first assumption posits that every agent has perfect information (i.e., accurate beliefs)
on the average action of all others; we describe the context as one of global (or complete)
information (GI).

• The second assumption supposes that, given the prevailing social network, each agent forms
individual (possibly inaccurate) beliefs by combining the information she observes locally
(her neighbors’ actions) and the beliefs she is locally exposed to (her neighbors’ beliefs); this
context is therefore described as one with local (thus limited) information and learning (LIL).

1A reflection of this challenge is what Shadmehr (2021) labels Tullock’s Paradox of Revolution (cf. Tullock (1971)).
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There is a large literature that, starting from the seminal papers by Kandori et al. (1993) and
Young (1993), has modeled equilibrium selection in coordination games as the outcome of a noisy
evolutionary process of learning under complete/global information.2 A conceptual problem with
this approach is that, if the population is large, the expected rate of convergence to the long-run
theoretical prediction is generally very slow, which makes the expected time required to reach it
very long. This renders it difficult to interpret the induced results as reasonable predictions for a
time scale that is relevant to many real-world phenomena. A way that has been proposed to tackle
this issue is to suppose that agents’ interactions – and therefore the payoffs following from it – are
local-based (see Ellison (1993) for an early proponent of this idea). For our purposes, however, the
problem with this formulation is that it defines an interaction setup that is strictly local, hence
failing to capture the fact that in many social contexts (in particular, in some important problems
of collective action), the coordination required also embodies a substantial population-wide (i.e.,
global) component.

Motivated by the conceptual limitations faced by strictly local or global frameworks, in this
paper we introduce a theoretical framework that blends local and global interaction and allows us
to compare the implications of the alternative learning/belief-formation scenarios induced by the
GI and LIL assumptions. First, we find that the GI scenario inherits the qualitative properties
commonly displayed in the received evolutionary literature on coordination games under global
interaction but also its conceptual problems – that is, the GI scenario delivers a sharp equilibrium-
selection prediction, but the convergence to it is exceedingly slow. In contrast, the alternative
learning framework studied in the LIL scenario exhibits, jointly, the desirable properties separately
induced by the global- and local-interaction models of social coordination. More specifically, we
show that such a scenario enjoys the following two features: (a) local interaction and (also locally
based) social learning play an important role in speeding up the convergence process; (b) global
interaction is the key force underlying agents’ payoffs and therefore also their incentives to join or
shun collective action.

From a methodological viewpoint, the first important step in our analysis of the model is to
obtain a full characterization of the long-run behavior of the evolutionary process, as captured by
the induced limiting probability distribution over possible states. This characterization, undertaken
for both the GI and the LIL scenarios, has two important implications – one for the development
of the theory, and another for its empirical application.

On the theoretical side, it allows us to conduct a detailed comparative analysis of the different
forces at work in the evolutionary process, as well as an exhaustive exploration of the effects induced
on it by the different model parameters. This helps us shed some light on the central question of
how our different assumptions on the interplay of information, communication, and coordination
impinge on the plausibility of collective action in large populations. The main insight we gather
from the exercise is that the arguably more “realistic” LIL scenario provides much stronger support
for the attainment of collective action in the following two respects. First, it expands substantially
the range of conditions (i.e., primitives of the model) where long-run behavior is consistent with
collective action. Second, it induces a much faster convergence to such a state of affairs. In addition,
our (closed-form) determination of the long-run behavior of the process permits us to answer the
following types of questions. What is the comparative importance of observation and learning in
shaping agents’ beliefs? What is the effect of individual heterogeneity – and, possibly, homophily
– in forming the social network? Does easier/cheaper connectivity – and hence a more dense

2See also the monographs by Samuelson (1998), Vega-Redondo (1996), and Young (1998) that provide early
overviews of this literature.
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network – help coordination on collective action? What is the impact of behavioral conformity
(i.e., the agents’ desire to coordinate actions with others), either locally or globally, have on the
evolution of the process? Overall, our analysis shows that all of the above phenomena – observation
and learning, heterogeneity and homophily, network density, and behavioral conformity – have, in
interplay, a significant effect on whether collective action eventually materializes or not.

On the empirical side, the fact that our theory provides a characterization of the limiting
distribution of the process in closed form (i.e., as an explicit function of the parameters) allows us
to use that same distribution as a likelihood function for the structural estimation of the model,
using data obtained from the massive social protests taking place in Egypt during the so-called
Arab Spring. Specifically, we rely on Twitter data of tweets and connections of 225,578 users
during the military backlash that, in June 2013, toppled the Morsi government. This information
is used for two purposes. First, we construct the underlying social network, identifying inter-agent
links with the bilateral relationships that show reciprocal influence. Second, we rely on machine-
learning techniques used in the field of Natural Language Processing (NLP) to infer the agents’
characteristics (e.g., their gender, political bias, or religious affiliation) as well as ongoing beliefs
and behavior (in particular, their support of, or opposition to, the social movement protesting
Mosi’s removal by the Egyptian military.).

Because of the large size of our data set, conventional maximum-likelihood methods are not
feasible, nor are the simulation-based Bayesian approaches proposed by the recent literature (Badev,
2021; Hsieh et al., 2020; Hsieh et al., 2022; Mele, 2017). Although we also utilize the Bayesian
approach in this paper, we opt for the composite likelihood approach approach (Lindsay, 1988;
Varin et al., 2011) and implement a case-control procedure on a sparse matrix to alleviate the
computational burden. The estimates obtained are significant and have the expected signs, in
line with the theory. They also provide an intuitive understanding of the context being studied.
For example, we find that both social learning and local observation are significant components of
belief formation (the former having a higher weight than the latter). Such endogenously generated
expectations are one of the important forces driving behavior. The other force derives from the
inherent costs or risks, as well as benefits and ambitions, that agents anticipate when deciding
whether or not to contribute to collective action. In our model, their net effect is captured by a
single (fixed) parameter. As part of our econometric exercise, this parameter is estimated from our
data and it turns out to have a positive sign. This suggests that, in the Egyptian revolt against
the military, the population perceived, on average, that the intrinsic costs and risks of joining the
protests were more than offset by the corresponding benefits.

Our estimated model allows us to analyze counterfactual scenarios where we can study the im-
pact of changes in the fundamental parameters of the model on rioting behavior. As an illustration,
we focus on the following two cases: (i) we examine the role of linking costs in affecting rioting
behavior; (ii) we analyze how biasing the beliefs towards a specific action can influence the rioting
outcome. In case (i), we observe that a reduction of the linking cost by 20% yields an increase in
the fraction of rioting agents by 15%. This shows that as linking and exchanging information via
the network becomes more costly (e.g., by interrupting or blocking social media), fewer links are
being formed, coordination among agents becomes more difficult, and fewer agents participate in
the protest as a consequence. This finding illustrates and quantifies the importance of online social
networks in the emergence of instances of collective action such as protest movements or riots. In
case (ii), we contemplate the possibility of a government influencing the belief updating equation of
the agents, biasing it towards the preferred action of the government (status quo). Our results show
that while such a belief manipulation (say, “propaganda”) does not affect the network density it
has a drastic effect on rioting, reducing the fraction of rioting agents by up to 30%. These findings
highlight that the manipulation of information can mitigate the formation of collective action but

3



cannot suppress it entirely.

We conclude this introduction with a brief discussion of the relationship between our research
and existing literature. On the theoretical front, we may highlight three different strands of work.
One is the extensive research that has been conducted on coordination games in networks. For fixed
networks, the problem has been studied (besides the already mentioned paper of Ellison (1993))
by, for example, Blume (1993), Brock and Durlauf (2001) or Morris (2000), while the analysis
was extended to co-evolving endogenous networks by Jackson and Watts (2002) and Goyal and
Vega-Redondo (2005).

A second branch of related literature includes the booming recent research on learning in net-
works (cf. Golub and Sadler (2016) for a survey). As a small sample, we may refer to the influential
contributions by Acemoglu et al. (2014), DeMarzo et al. (2003), and Jackson and Golub (2010).
While the first paper adopts a Bayesian approach to the problem, the latter two build upon the
bounded-rationality framework proposed by DeGroot (1974). The latter approach – which posits
that agents update their beliefs by linearly combining their own with those of their network neigh-
bors – has received some experimental support (c.f. Chandrasekhar et al. (2015)) and heavily
inspires the learning dynamics contemplated by our model.

Third, our work connects to models of collective action that, in line with the seminal work of
Granovetter (1978), frame it as a threshold coordination problem. In this class of models, agents
assess the cost and benefits of joining the collective action in terms of the fraction of other agents
who may also join. Many papers in this literature stress, as we do, the crucial role played by
information – in particular, they focus on the question of how agents gather such information, on
the basis of what each of them can individually observe (see e.g. the aforementioned paper by Chwe
(2000) or those of Barberà and Jackson (2020) and Lohmann (2000)). Further, Bueno de Mesquita
(2010) and Shadmehr (2021) show that in this class of models “revolutionary entrepreneurs” may act
as informational vanguards that lead the rest of the population. A variation of such a triggering
vanguard-led mechanism for collective action also arises in our framework when we model the
problem as one where agents learn from the limited information provided by their connections.

The empirical component of our paper builds upon the recent body of work that has developed
econometric methods designed to study the co-determination of networks and actions in social
contexts, addressing the difficult identification/endogeneity issues entailed (see, for example, the
recent papers by Goldsmith et al (2013), Hsieh et al. (2016), and Johnsson and Moon (2021)). A
few papers, such as those by Boucher (2016) and the aforementioned (Badev, 2021; Hsieh et al.,
2020; Hsieh et al., 2022; Mele, 2017), apply these methods to carry out, as in our case, structural
estimation of an underlying theoretical model. Their econometric methods, however, are compu-
tationally unfeasible in dealing with large social networks such as those common on social media
platforms.

Our work also relates to the recent literature studying the role of social media in facilitating
collective action – in particular, in supporting massive events of social protest. González-Bailón
et al. (2011) study the role that Twitter had in the surge of the anti-austerity mobilizations that
took place in Spain in May 2011. They show that the induced online network played an important
role in the recruitment process by means of local “contagion.” Acemoglu et al. (2018) focus on
the same instance of social protests as we do – the Egyptian Arab Spring – and find support for
the conclusion that a rise in Twitter activity preceded the triggering of social protests. Steinert-
Threlkeld et al. (2015) and Steinert-Threlkeld (2017) further document the association between
Twitter posts and protests throughout the wider Arab Spring, emphasizing the role of individuals
on the periphery of the network in influencing the levels of protest.
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In a similar vein but with a different methodological perspective, Enikolopov et al. (2020) study
the wave of social protests that took place in Russia in 2011. Their main contribution is to identify
a causal positive relationship between differences in the degree of social media penetration and the
extent of social protest. Interestingly, they also show that the main basis for this effect is not the
wider access to information the social media provide; instead, they highlight “the importance of
horizontal information exchange on people’s ability to overcome the collective action problem.” This
is in line with our own analysis, where the social network acts as a channel through which neighbors
obtain information. More specifically, our approach is grounded on the idea that agents gather that
information not only by observing their neighbors’ actions but also by learning/exchanging their
beliefs. The key role played by the network in shaping people’s beliefs is also highlighted by
the experimental evidence studied by Cantoni et al. (2019). They run a field experiment during
the Hong Kong protests of 2016, manipulating citizens’ beliefs of others’ protest participation
in an effort to identify how these beliefs affect their own participation in the protests. Their
results suggest that individual’s decision to protest are strategic substitutes. In our case, we base
our analysis on Twitter (non-experimental) data and a structural model, and our approach to
identifying agents’ attitudes and beliefs is based on fine-tuned pretrained language models from
the field of Natural Language Processing (NLP). We find that protest behavior displays strategic
complementarities, locally among network neighbors and also globally.

The rest of the paper is organized as follows. Section 2 presents the theoretical framework (the
game-theoretic setup, the law of motion for actions and links, and the different belief formation
scenarios). Section 3 undertakes the formal analysis of the model, characterizing the long-run be-
havior of the system for each of the two scenarios considered (GI and LIL) and comparing their
implications. Section 4 summarizes the data used in our application of the model to the Egyptian
Arab Spring, while in Section 5 we discuss the estimation method and discuss the estimation results.
Section 6 carries out counterfactual analysis that illustrates the role of network connections and
information manipulation on the extent of collective action. Section 7 concludes the main body of
the paper, while in Appendix A we include the formal proofs of all our theoretical results. We also
include various supplementary appendices: Supplementary Appendix B discusses some extensions
of the model; Supplementary Appendix C provides the details of the equilibrium characterization
for vanishing noise in the LIL scenario; in Supplementary Appendix D we derive predictions of
the theoretical model for finite noise and complement them with numerical simulations; in Online
Appendix E we provide a complete characterization of the stochastically stable states for finite
populations; in Supplementary Appendix F we describe the historical conditions that help contex-
tualize our data; Supplementary Appendix G provides additional details for the data construction;
Supplementary Appendix H summarizes the specifications of prior distributions and the implemen-
tation of the Bayesian estimation procedure; Supplementary Appendix I describes a Monte Carlo
simulation study that examines the performance of the Bayesian estimation algorithm (based on
the composite likelihood function and the case-control approach); and Supplementary Appendix J
performs a robustness check of our estimation results.

2. The Model
We divide the presentation of the model into three parts. First, in Subsection 2.1 we introduce

the basic interaction setup, i.e., we describe the primitives that define the interaction, induce the
payoffs, and characterize the state of the system. Then, in Subsection 2.2 we specify the dynamics,
i.e., the law of motion that determines how actions and links change over time, as a function of the
prevailing beliefs. Finally, Subsection 2.3 introduces alternative formulations on how such beliefs
are formed, depending on the information agents have access to.
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2.1. Basic Setup
Consider a population N = {1, . . . , n}, conceived as large, which is involved in a problem of

collection action. For concreteness, we interpret it to represent some instance of social protest and
call it a “riot.” Each individual i ∈ N must choose an action si, which is a dichotomous decision
of whether to join the riot or not. Formally,3 it is convenient to identify joining the riot with +1
and not doing so with −1. Thus, an action profile for the whole population is given by a vector
s = (s1, . . . , sn)

⊤ ∈ S = {−1,+1}n whose cardinality is given by #({−1,+1}n) = 2n.

The population is also connected through bilateral links as given by the current social network
G. Any such network can be represented by its adjacency (binary) matrix A = (aij)

n
i,j=1, where

each entry aij (i, j = 1, 2, . . . , n) is either 1 or 0 if i is either connected to j or not (with the
convention that aii = 0). For simplicity, we shall consider undirected networks, which means that
the matrix A is symmetric, i.e., aij = aji for all i, j ∈ N . The set of all undirected networks of size
n is denoted by Gn.4

Given any action profile s and an adjacency matrix A, we expand on the classical interaction
models studied by Brock and Durlauf (2001) and Blume et al. (2011) and posit that each agent
i ∈ N holds some point belief ψi ∈ [−1,+1] on the average action chosen by every other agent
in the population. Then, assuming that agent i observes perfectly the action sj chosen by each of
her (immediate) network neighbors j (i.e. those j with aij = 1), her expected payoff is defined as
follows:

πi(s, G;ψi) =
n∑

j=1,j ̸=i
(ρsiψi + θaijsisj)︸ ︷︷ ︸
interaction effect

+ γisi︸︷︷︸
idiosyn.
bias

− κsi︸︷︷︸
action
cost

−
n∑

j=1,j ̸=i
aijζij ,︸ ︷︷ ︸

linking costs

(1)

where

• ρ ∈ (0, 1) is the parameter modulating a force towards global conformity with her
expectation ψi of the average (population-wide) action;

• θ ∈ (0, 1) is a parameter capturing a force towards local conformity with the
accurately perceived actions sj of her (direct) network neighbors (i.e. those j s.t. aij = 1);

• γi ∈ {−1,+1} is i’s idiosyncratic characteristic shaping her bias for either action;

• κ ≥ 0 is a common cost for choosing action si = +1 (e.g., the effort/risk of rioting);

• ζij ≥ 0 is the linking cost between agents i and j.

We propose the following interpretation of the payoff structure (1). Its first term, the interaction
effect, captures the genuinely strategic part of the model and has two components: a global and a
local one. The global component,

∑n
j ̸=i ρsiψi, whose relative weight is parametrized by ρ, embodies

the essential coordination problem involved in collective action as it is perceived by agent i, given her
beliefs ψi on the average action in the population. More concretely, one can think of such average
action as shaping the probability that collective action is successful, with the expected benefit (or
penalty) from being (mis)aligned with the more likely outcome depending on how concentrated
those beliefs are (i.e., how close they are to either +1 or −1).5

3This is also the customary convention adopted in the analysis of the classical Ising model (cf. Grimmett, 2010).
4To understand how the analysis could be adapted if links are taken to be directed, see Supplementary Appendix

B.1. However, here we consider undirected links, as it is standard in the social networks literature on peer effects,
and we leave the detailed analysis of directed networks to future work.

5To fix ideas, a simple formalization could be as follows. Suppose that the probability of the collective effort on
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The second local component of the interaction effect,
∑n

j ̸=i aijsisj , whose weight is parameter-
ized by θ, reflects the classical assumption commonly made in the literature on games on networks
(cf. Jackson and Zenou, 2015): agents like to have their behavior well aligned with that of their
network partners/friends. As we shall see, the main role played by this local conformity component
in our model is to provide a simple basis to guide agents’ networking (linking) behavior. The
next two terms in (1) – i.e., the idiosyncratic bias and the action cost– introduce different types of
asymmetries between the two actions. The first one is associated with the fixed type γi ∈ {+1,−1}
of agent i and provides a clear meaning to the notion of type in our context: every agent has a bias
in favor of the action that matches her type. In contrast, the second source of action asymmetry
induced by κ is intrinsically associated with the action choice of the agent, independently of her
type. The fact that we speak of it as a “cost” implicitly suggests that κ is positive and there-
fore presumes that the support for collective action (+1) bears an intrinsic disutility. Our model,
however, allows for the possibility that agents may have a substantial preference for rioting that
exceeds any costs (termed “entertainment value of participation” by Tullock (1971)). This would
be captured by a κ < 0.6 Finally, the last term in (1) includes linking costs ζij for the bilateral
link that may formed or maintained between any given pair of agents, i and j. Type heterogeneity
is taken to have an impact on these costs as follows:7

ζij = ζ1 −
ζ1 − ζ2

2
(1− γiγj) =

{
ζ1, if γi = γj ,

ζ2, if γi ̸= γj ,
(2)

with 0 ≤ ζ1 < ζ2. The above formulation entails that agents with the same idiosyncratic preferences
enjoy a lower linking cost, hence inducing a bias/preference for connections between individuals of
the same type. This phenomenon, known as homophily, has been shown to be a common feature in
human nature, long highlighted by sociologists (cf. Lazarsfeld and Merton, 2014; McPherson et al.,
2001) and recently studied by economists as well (see, e.g., Currarini et al., 2009).

2.2. Dynamics
In our model, both action and linking choices are endogenous variables and define the state

of the system, ω = (s, G) ∈ Ω, as it changes over time. For technical tractability, we model
time continuously and denote it by t ∈ [0,∞). The dynamics consist of three components: action
adjustment, link creation, and link removal, which will be separately defined below. These adjust-
ments will be assumed to depend on the expected payoffs perceived by the agents at the time of
their adjustment. This requires specifying how each agent i forms her beliefs pit ∈ [−1,+1] on the
average action of others, 1

n−1

∑n
j ̸=i sj . For the moment, we formulate this in abstract terms and

simply postulate that, for each i, her beliefs are related to the prevailing state through a function
ψi : Ω → [−1,+1]. Different concrete possibilities for the functions ψi(·) are considered below, in
Subsection 2.3.

action +1 being successful is given by the following “contest success function” (Tullock, 1980): p+ = n+

n++n− = n+

n
,

where n± = |{i ∈ N : si = ±1}| counts the number of agents choosing action +1 or −1, respectively. Then note
that n+ = 1

2

∑n
i=1(1 + si) and therefore we can write p+ = 1

2n

∑n
i=1(1 + si) =

1
2
(1 + s̄), where s̄ = 1

n

∑n
i=1 si is the

average action in the population. Knowing this, agent i’ s expectations on s̄ would give rise to (point) expectation
of the probability on p+ would be given by ψ̃i =

1
2
(1 + ψi), which yields global payoffs as specified in (1) with ψ̃i in

lieu of 1
2
(1 + ψi). It is easy to see that such affine transformation does not alter in any significant way our analysis.

6Note that since the actions are symmetric except for the effect of the parameter κ, the results for κ < 0 can be
obtained from the results for κ ≥ 0 by switching the labels from +1 to −1.

7For an extension of the model that allows for endogenous (i.e., action-dependent) linking costs, see Online
Appendix B.2. There, we show that this extension induces the same functional form as in (1), up to a shift in
parameter θ.
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As customary in the evolutionary literature, expected payoffs will be assumed to be subject to
persistent random noise. This noise can be motivated as the result of a number of different (non-
exclusive) factors. One possibility proposed e.g., by Brock and Durlauf (2001), is that the game
is subject to shocks, which are observed by the agents but not by the modeler. Another option
is to suppose that the noise captures agents’ uncertainty about the payoff (and hence behavior)
of others. Finally, a third motivation that has been highlighted by evolutionary game theory (cf.
Blume, 1993; Kandori et al., 1993; Young, 1993) is that agents make mistakes or simply experiment
with some exogenous probability.

Mathematically, the evolutionary adjustment of actions and links defines a stochastic process
that induces a probability measure over the set of state paths of the form (ωt)t∈R+ , ωt ∈ Ω, where
each state ωt = (st, Gt) consists of a vector of agents’ actions st ∈ {−1,+1}n and a network
Gt ∈ Gn. Its law of motion can be described as follows.8

In every time interval of infinitesimal length, [t, t + ∆t), t ∈ R+, the following subprocesses
simultaneously operate:

Action adjustment: At rate χ > 0, every agent i ∈ N is randomly given an independent oppor-
tunity to change her current action sit ∈ {−1,+1} to the alternative s′i. Upon receiving this
opportunity, the action change is implemented if, and only if, the agent perceives it beneficial
in terms of the expected payoffs specified in (1) and an additive random shock εit. Thus, the
probability that any given agent i switches from action sit to s′i is given by:

P
(
ωt+∆t = (s′i, s−it, Gt)|ωt = (sit, s−it, Gt)

)
=

χ P
(
πi(s

′
i, s−it, Gt;ψi(st, Gt))− πi(sit, s−it, Gt;ψi(st, Gt)) + εit > 0

)
∆t+ o(∆t)

(3)

Link adjustment: At rate λ > 0, every pair of agents, i and j, are randomly given an independent
opportunity to either form a link ij if they are not currently connected, or remove a link if
connected. Upon receiving this opportunity, the link is established/maintained if, and only if,
both agents perceive it as beneficial in terms of the expected payoffs specified in (1) and an
additive random shock εij,t. Thus, the probability that any such link ij is formed is given by:

P (ωt+∆t = (st, Gt ± ij)|ωt−1 = (s, Gt)) =

λ P
(
{πi (st, Gt ± ij;ψi(st, Gt))− πi(st, Gt;ψi(st, Gt)) + εij,t > 0} ∩

{πj(st, Gt ± ij;ψi(st, Gt))− πj(st, Gt;ψi(st, Gt)) + εij,t > 0}
)
∆t+ o(∆t),

(4)

where Gt ± ij denotes the network Gt with the link ij added (+) or removed (−).

Throughout, we shall make the assumption that all random shocks are independently and logis-
tically distributed with mean zero and the same scale parameter η ≥ 0. Therefore, its cumulative
distribution function Fε(x) is given by eηx

1+eηx and we can write the action-adjustment rule (3) in

8The adjustment process has some similarity to that of Hsieh et al. (2022), time being measured continuously and
revision opportunities arriving as a Poisson process (cf. Sandholm, 2010).
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the following explicit form:9

P(ωt+∆t = (s′i,s−it, Gt)|ωt = (si, s−it, Gt))

= χ P
(
−εit < πi(s

′
i, s−it, Gt;ψi(st, Gt))− πi(sit, s−it, Gt;ψi(st, Gt))

)
∆t+ o(∆t)

= χ
eη πi(s

′
i,s−it,Gt;ψi(st,Gt))

eη πi(s
′
i,s−it,Gt;ψi(st,Gt)) + eη πi(si,s−it,Gt;ψi(st,Gt))

∆t+ o(∆t).

And, proceeding analogously for the link adjustment rule (4), we arrive at the following correspond-
ing expressions for link adjustment

P (ωt+∆t = (st, Gt ± ij)|ωt = (st, Gt)) =λ
eη πi(st,Gt±ij;ψi(st,Gt))

eη πi(st,Gt±ij;ψi(st,Gt)) + eη πi(st,Gt;ψi(st,Gt))
∆t+ o(∆t)

=λ
eη πj(st,Gt±ij;ψi(st,Gt))

eη πj(st,Gt±ij;ψi(st,Gt)) + eη πj(st,Gt;ψi(st,Gt))
∆t+ o(∆t),

where note that the link-adjustment probabilities are identical for the two agents, i and j, involved
in any link change (be it creation or removal) because, given the logistic noise formulation, and the
symmetry of the payoff function, the corresponding change in payoffs induced by it is the same for
both of them.

2.3. Beliefs
To complete the description of the model, we now introduce the two different belief-formation

scenarios that we shall consider and contrast. One embodies the classical formulation considered
by much of the evolutionary literature of learning in games: at each point in the process, agents
are completely informed of all the payoff-relevant features of the current state of the process.
These features include, specifically, the average support for collective action provided by the rest
of the population (i.e., the average action). For conciseness, this first scenario is labeled Global
Information (GI), and is simply captured by the belief-formation mapping ψGI =

(
ψGIi

)
i∈N : Ω →

[−1, 1]n that, for each ω = (s, G) ∈ Ω, is defined as follows:

ψGIi (ω) =
1

n− 1

n∑
j=1,j ̸=i

sj (i = 1, 2, . . . , n). (5)

Thus, for every t, the beliefs pit = ψi(ωt) held by each agent i ∈ N coincide with the “true” average
action chosen by the rest of the population.

In the alternative scenario, which we label Local Information and Learning (LIL), we sup-
pose that agents gather information locally on the overall average support for collective from a
combination of:

(a) the observation of that support among their network neighbors;
(b) the learning derived from interacting with those same neighbors.

The observation of the local average action posited in (a) derives from our assumption that every
agent directly observes the actions {sj : aij = 1} of her network neighbors and, naturally, know their
degree di =

∑n
j ̸=i aij . On the other hand, the local interaction/learning in (b) is modeled along

the lines of the well-known framework proposed by DeGroot (1974).10 More specifically, we posit

9Note that if z is logistically distributed with mean 0 and scale parameter η, then the random variable ε = −z
has a distribution function Fε(·) given by Fε(y) = 1− Fz(−y) = eηy

1+eηy .
10See also Berger (1981), Jackson and Golub (2010), Golub and Jackson (2012) and DeMarzo et al. (2003). Chan-
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that given the state ωt = (st, Gt) = [(s1t, s2t, . . . , snt)
⊤, Gt] prevailing at any given time t in the

evolutionary adjustment process, there is a sequence of learning rounds, indexed by u = 0, 1, 2, . . .,
where the point beliefs put = (pu1t, p

u
2t, . . . , p

u
nt) are updated as follows:

pu+1
it = φ

1

dit

n∑
j=1

aij,tsjt︸ ︷︷ ︸
local average

actions

+(1− φ)
1

dit + 1

puit + n∑
j=1

aij,tp
u
jt


︸ ︷︷ ︸

local average
beliefs

(i = 1, 2, ..., n) (6)

where the first term in (6) is assumed to be zero if dit = 0, and φ ∈ (0, 1) is the updating weight
given to local observation while the complementary value (1 − φ) is the weight given to social
learning. Such social learning reflects the simple idea that agents update their beliefs by mixing
uniformly their own previous beliefs and those of their network neighbors.

In line with the assumption made for the GI scenario, let us postulate that, also for the LIL
scenario, the belief-updating adjustment formalized above occurs very fast and reaches a stationary
point p⋆t . It can be easily confirmed that such a stationary point always exists and is unique. To
see it, let us write (6) in compact matrix form as follows:

pu+1
t = φD−1

t Atst + (1− φ)D̂−1
t Ât p

u
t (7)

where Dt ≡ diag(d1t, . . . , dnt) is the diagonal matrix of agents’ degrees at t, D̂t ≡ In +Dt with In
being the identity matrix, Ât ≡ In+At, and pt and st are interpreted as column vectors of agents’
beliefs and actions. Then, the induced stationary beliefs are given by:

p∗
t = φ

[
In − (1− φ)D̂−1

t Ât

]−1
D−1
t Atst (8)

which is a well-defined expression since the matrix D̂−1
t Ât is row-stochastic and φ > 0.11

Thus, in sum, the LIL scenario is characterized by the belief-formation mapping ψLIL =(
ψLILi

)
i∈N : Ω → [−1, 1]n that, for each ω = (s, G) ∈ Ω, is defined as follows:

ψLIL(ω) = φ
[
In − (1− φ)D̂−1Â

]−1
D−1As, (9)

where A and D specify, respectively, the adjacency matrix of the network G and its corresponding
diagonal matrix of agents’ degrees while, as before, Â ≡ In +A and D̂ ≡ In +D.

3. Theoretical Analysis
In this section we conduct the theoretical analysis of the model, studying in turn the two

belief-formation scenarios considered: GI in Subsection 3.1, and LIL in Subsection 3.2. Then, in
Subsection 3.3 we compare the conclusions and insights derived from the two contexts.

drasekhar et al. (2015) and Grimm and Mengel (2015) provide empirical evidence that individuals who attempt to
learn the underlying state of the world in a network are well described by DeGroot-type models.

11Of course, this would not be the case for the extreme value of φ = 0, for which we would arrive at the customary
DeGroot model. In it, actions play no role and stationary beliefs – if they exist – depend on the starting ones p0 in
a way that reflects the architecture of the social network.
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3.1. Global Information
In order to characterize the long-run behavior of the system under GI, the key point to note is

that, given the belief-formation mapping ψGI =
(
ψGIi

)
i∈N defined in (5), the function Φ : Ω → R

given by:

Φ(ω) =

n∑
i=1

(γi − κ)si +

n∑
j=1,j ̸=i

1
2

[
ρsiψ

GI
i (ω) + aij(θsisj − ζij)

] (10)

which can be rewritten as

Φ(ω) =

n∑
i=1

(γi − κ)si +
1
2

ρsi(n− 1)ψGIi (ω) +
∑
j ̸=i

aij(θsisj − ζij)

 (11)

is a potential for the expected payoff function given in (1) under belief-formation rule ψGI defined
in (5). This means that, for any change in a single component of the state (an action or a link)
involving any particular agent i, the change on the expected payoffs πi(·;ψGIi (·)) experienced by
this agent matches exactly the corresponding change displayed by the function Φ(·). Formally, the
following two conditions must hold ∀i, j ∈ N , G ∈ Gn, s ∈ S and s′i ∈ Si = {−1,+1}:

Let ω = (si, s−i, G), ω
′ = (s′i, s−i, G) ∈ Ω. Then,

Φ(ω′)− Φ(ω) = πi(ω
′;ψGIi (ω))− πi(ω;ψ

GI
i (ω)).

(12)

Let ω = (s,G), ω′ = (s, G± ij) ∈ Ω. Then,
Φ(ω′)− Φ(ω) = πi(ω

′;ψGIi (ω))− πi(ω;ψ
GI
i (ω))

= πj(ω
′;ψGIj (ω))− πj(ω;ψ

GI
j (ω)).

(13)

In the second condition above, G ± ij stands for the network given by G with the link ij added
(+) or deleted (−). A compact way of rewriting the previous two conditions that will be useful
hereafter is as follows. Given any agent i and two states ω and ω′, let us say that ω′ is adjacent
to ω for agent i and write ω′ ∈ Ai(ω) if the former state differs from the latter either in action
chosen by i or in one of her links (either present or absent in state ω). Then, it is easy to confirm
that an equivalent way of rewriting (12)-(13) as a single condition is:

Let ω,ω′ ∈ Ω be such that ω′ ∈ Ai(ω) for some i ∈ N . Then,
Φ(ω′)− Φ(ω) = πi(ω

′;ψGIi (ω))− πi(ω;ψ
GI
i (ω)).

(14)

To understand intuitively why the function Φ(·) defined in (11) satisfies (14), it is useful to think
of it as adding the payoffs attained by all individuals in any given state ω, with the important
caveat that all those payoffs derived from interaction (i.e., from coordination or link formation)
are split equally between the two agents involved. It is precisely because of this feature, and the
additivity plus agent symmetry displayed across the different components of payoff interaction, that
the function Φ(·) yields the desired match between: (a) the change in individual payoffs experienced
by the agent(s) involved in any action or link revision, (b) the corresponding potential change. For
the sake of completeness, this straightforward conclusion is stated in the following result, whose
formal proof can be found in Appendix A.

Proposition 1. Given beliefs ψGIi (·), the function Φ(·) given in (10) defines a potential for the
agents’ expected payoffs πi(·;ψGIi (·)) for each i ∈ N , as specified in (1); that is, condition (14)
holds.
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The previous result leads to a couple of interesting consequences. The first one is standard:
noiseless best-response adjustment of actions and links converge, almost surely, to an equilibrium
(stationary point) where the potential is locally maximized.12 A second consequence is that, even
for possibly large noise (as captured by a low η), the existence of such a potential leads to a
probabilistic prediction about the long-run behavior of the induced stochastic process that has a
sharp exponential form. For, as stated by our next result (whose proof is also included in Appendix
A), an adaptation of arguments used in traditional models of statistical physics delivers the following
proposition (cf. Blume, 1993; Sandholm, 2010).
Proposition 2. Consider the stochastic process (ωt)t∈R+ defined by (3)-(5), where the additive
shocks perturbing agents’ payoffs are i.i.d. logistically distributed with parameter η > 0 and the
belief-formation rules of the global-information scenario apply, i.e., they are given by the function
ψGIi (·). Then, this process induces an ergodic Markov chain whose unique invariant distribution
µGIη , defined on the measurable space (Ω,F), is determined for every ω = (s, G) ∈ Ω as follows:

µGIη (ω) =
eηΦ(ω)∑

ω′∈Ω e
ηΦ(ω′)

=
eηΦ(s,G)∑

G′∈Gn

∑
s′∈{−1,+1}n e

ηΦ(s′,G′)
. (15)

The above proposition provides an explicit solution of the model in the GI scenario by specifying,
in closed form, how the probability distribution µGIη that characterizes the long-run behavior of the
process depends on the noise level (modulated by η) and all other parameters of the model. This
theoretical prediction, captured by (15), is illustrated with numerical simulations in Supplementary
Appendix D.1.

A straightforward implication of Proposition 2 is that the changes across adjacent states in
the potential Φ(·) and the distribution µGIη are of the same sign, i.e., for all η > 0, ω,ω′ ∈ Ω,
µGIη (ω′) ≥ µGIη (ω) ⇔ Φ(ω′) ≥ Φ(ω). Furthermore, it also follows that the set of potential-
maximizing states:

Ω∗ ≡ {ω ∈ Ω : Φ(ω) ≥ Φ(ω′) ∀ω′ ∈ Ω} = {ω ∈ Ω : µGIη (ω) ≥ µGIη (ω′) ∀ω′ ∈ Ω}. (16)

singles out those states that are individually attributed the highest probability by the uniquely
invariant (or stationary) distribution of the process. Or, if the noise of the process becomes van-
ishingly small, it also identifies the support of the induced distribution, thus singling out the states
that are observed with significant probability under infinitesimal noise (see Subsection 3.3 below).

Motivated by these considerations, in what follows we characterize the set Ω∗, as a function of
the parameters of the model. For expositional simplicity, our focus below is on the most interesting
case where the population is large and the lowest linking cost is not prohibitive (i.e., ζ1 < θ).13
Also, it is useful to divide the analysis into two subcases, depending on whether the fraction of
individuals of type +1 in the population (a parameter of the model) is higher or lower than 1/2.
Thus, denoting such fraction by ν+ we arrive at our main result for the GI scenario.
Proposition 3. Assume all agents form their beliefs as prescribed by the function ψGI(·) defined
by (5). Let n+ = #({γi = +1 : i ∈ N}) and ν+ = n+/n. Then there exists some n̂ ∈ N such
that if n ≥ n̂, the set Ω∗ is generically a singleton and its unique state ω∗ = (s∗, G∗) ∈ Ω∗ can be
characterized as follows:

12This equilibrium can be viewed as a Nash equilibrium of the complete-information game where actions and linking
proposals are chosen independently by the agents, the links being created and maintained only by consensus of the
agents involved.

13See Supplementary Appendix E.1 for a general characterization for any finite population size n.
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(a) The action profile s∗ = (s∗i )i∈N satisfies:
• if κ > 2ν+ − 1, s∗i = −1 for all i ∈ N .
• if κ < 2ν+ − 1, s∗i = +1 for all i ∈ N .

(b) The network G∗ satisfies:
• if θ > ζ2 the network is complete, whereas if θ < ζ1 it is empty.
• if ζ1 < θ < ζ2 the network is segmented into two (disjoint and completely connected)

cliques, Kn+ and Kn−n+, with no links across them and each including all agents of
types +1 and −1, respectively.

The characterization provided by Proposition 3 delivers some intuitive conclusions. The first
two items (a)-(b), which pertain to action choice, indicate that the generically unique state ω∗ =
(s∗, G∗) ∈ Ω∗ that maximizes the potential Φ(·) (and therefore the long-run probability given by
µGIη (·)) involves a uniform action profile where every agent in the population plays either action
+1 or −1 depending on whether or not the inherent negative bias against action +1 given by
its cost (assuming κ > 0) is compensated by the strength of the coordination-based incentives
derived from choosing that action if ν+ > 1/2 (and therefore there is majority of agents in the
population that have a preference for action +1). The last two items (c)-(d) concern the network
component of the state ω∗ and simply specify that the associated network G∗ is segmented along
type-homogenous cliques if the linking costs across different types exceed the best possible payoff to
be expected from local interaction and it is completely connected if the opposite inequality holds.
A prominent feature of these conclusions is that homophily (as reflected by a gap in linking costs
that has network implications) has no eventual bearing on the long-run choice of actions. They are
independent in the sense that while the latter only depends on κ and ν+, the former only responds
to the values of θ and ζ2. As we shall see, such independence does not arise in the LIL scenario,
and indeed it is the key feature that explains the contrast between the two scenarios.

3.2. Local Information and Learning
Now we turn to the study of the LIL scenario where, as explained in Subsection 2.3, beliefs

are governed by the mapping ψLIL(·) given by (9). By analogy with the GI scenario, it may be
speculated that the expression in (11) that defines a potential in that case can be adapted to the
LIL context by simply relying on the corresponding belief-formation mapping ψLIL(·) in lieu of
ψGI(·). This, however, does not work because, in contrast with the GI scenario, the aggregate
“externality” imposed on the expected payoffs of the overall population by any agent revising her
behavior (action or link) is no longer equal to the effect induced on this agent’s own payoff. In fact,
such an externality will tend to decay fast along the social network (and therefore become relatively
small for large populations) if social learning – instead of local observation – is the main driving
force of belief formation. This in turn suggests that an adaptation of (11) that simply dispenses
with the “correction factor” of 1/2 on expected global payoffs may behave as a good approximate
potential for the LIL scenario. More precisely, the conjecture is that the function Φ̃ : Ω → R
defined, for each ω = (s , G) ∈ Ω, as follows

Φ̃(ω) =

n∑
i=1

(γi − κ)si + ρsi(n− 1)ψLILi (ω) + 1
2

 n∑
j=1,j ̸=i

aij(θsisj − ζij)

 , (17)

may capture the payoff incentives underlying agents’ adjustments quite well in the LIL scenario,
provided that the population is large and social learning plays a dominant role in belief formation.
Indeed, this is the gist of Proposition 4 below. Specifically, it shows that, under the aforementioned
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circumstances, such a modified function behaves essentially as an ordinal potential for LIL-based
adjustment.

Before proceeding to the formal statement of this result, it may be useful to understand heuris-
tically the key ideas underlying its proof. To this end, let us start with the simple observation
that, for any given pair of adjacent states for an agent i, ω and ω′, the induced change in the
corresponding values of the function Φ̃ when transitioning from the former state to the latter
satisfies:

Φ̃(ω′)−Φ̃(ω) = πi(ω
′, ψLILi (ω))−πi(ω, ψLILi (ω))+ρ(n− 1)

n∑
j=1

s′j(ψ
LIL
j (ω′)−ψLILj (ω)). (18)

Thus, the change induced on the function Φ̃(·) from such a transition is equal to the change in payoffs
of the agent(s) involved in it plus a remainder given by ρ(n−1)

∑n
j=1 s

′
j(ψ

LIL
j (ω′)−ψLILj (ω)). The

interpretation of this remainder should be clear: it measures the aggregate impact of the change
on the expected payoffs that the population at large derives from global interaction. In this light,
therefore, in order to show that the function Φ̃(·) behaves approximately as a potential in the LIL
context, it needs to be shown that any such transition has a small impact on population beliefs. Our
approach to proving this conclusion relies on the following assumption: as the population grows
large (its size n rises) and social learning becomes more important (i.e., (1−φ) approaches 1), the
long-run evolution of the process (as summarized by its limit distribution) yields social networks
with the properties typically found in large random networks with homophily – in particular,
sparseness and global connectivity (see below for the formal details).

Mathematically, our approach considers the sequence of state spaces associated to progres-
sively larger population sizes n, {Ωn = {Sn,Gn}}n∈N, and the corresponding sequence

{
µLILn

}
n∈N

of (unique) invariant distributions induced by the respective adjustment process in the LIL sce-
nario.14 Denote by di(ω) the degree of agent i in state ω = (G, s) and by d̄(ω), d̄−(ω), and d̄+(ω)
the average degrees over all nodes or restricted to those choosing actions +1 or −1, respectively.
Then, along the sequence {Ωn}n∈N, our focus turns to state subsets Ω̂n ⊂ Ωn satisfying the following
properties:

(P1) Growing but sparse connectivity: ∃{(b(n), c(n))}n∈N satisfying limn→∞ b(n) = ∞ and limn→∞
c(n)/n = 0 such that if ω = (G, s) ∈ Ω̂n, ∀i ∈ N, b(n) ≤ di(ω) ≤ c(n).

(P2) Network connectedness: ∀ω = (G, s) ∈ Ω̂n, ∀ω′ ∈ A(ω) ≡ ∪i∈NAi(ω), networks G and G′

display a single component, i.e., all nodes are path-connected.

(P3) Homophily. ∀ω = (G, s) ∈ Ω̂n,
∑

i∈N si ≥ 0 ⇔ d̄+(ω) ≥ d̄−(ω).

Verbally, the former properties can be described as follows. P1 asserts that, as the population
size grows, even though individual degrees also grow without bound, their growth is much slower
than that of the population – consequently, overall network connectivity remains sparse. Next, P2
switches attention to global/indirect connectivity (rather than local/direct) and posits that, for
every pair of nodes, there is a path on the network indirectly connecting one to the other. Finally,
P3 reflects the idea that, because of the action-based homophily displayed by our model, those
agents taking the action chosen by the majority of the population enjoy a higher average degree
than the ones choosing the alternative action.

14The uniqueness of the invariant distribution follows from the fact that, due the contemplated noise impinging on
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Figure 1: The left panel shows the average degree of agents choosing the majority action, d̄−, and the average degree
of the agents choosing the minority action, d̄+, the middle panel shows the fraction of agents choosing the action plus
one, |{i ∈ N : si = +1}|/n, or minus one, |{i ∈ N : si = −1}|/n and the right panel shows the fraction of agents in
the largest component |Gcc|/n. The parameters used are n = 200, ζ1 = 0.1, ζ2 = 0.8, θ = 0.15, ρ = 0.01, β = 0.5,
φ = 0.1, κ = −1.5, and η = 1.

The features embodied by P1-P3 are commonly displayed by dynamic network models that,
as in our case, combine random link formation and homophily – see, e.g., Currarini et al. (2009).
The forces underlying such conclusions in those more stylized setups operate in our context as
well. Thus, since the complexity of our model renders it difficult to derive those properties from
more primitive conditions, we suppose instead that they are held with high probability in the
long run and build upon this assumption in the ensuing analysis. In support of this approach,
we have conducted extensive numerical simulations for our LIL scenario whose results, illustrated
in Figure 1, are well aligned with P1-P3. They show that, after a transitory phase, the process
reaches a stationary state in which the fraction of agents choosing the action +1, n+/n, or −1,
n−/n, stabilize, the average degree of agents choosing the majority action, d̄−, is higher than the
average degree of the agents choosing the minority action, d̄+, and the size of the largest component
encompasses all agents in the network (i.e., |Gcc|/n approaches 1).

Building upon Properties P1-P3, the main assumption of our analysis is that, as the population
size n gets large, the states that satisfy them are observed in the long run with a probability that
approaches one, as captured by the corresponding limit invariant distribution µLILn (where note
that, for notational simplicity, we abstract from the dependence on η, which is taken to be fixed in
the present discussion). Thus, we assume:

A.1: There exists a sequence
{
Ω̂n

}
n=1,2,...

, with Ω̂n satisfying P1-P3 for all n, such that

limn→∞ µLILn (Ω̂n) = 1.

To simplify the analysis, it is convenient to rely as well on the ancillary assumption that, if the
population size n is large enough, the long-run probability mass that the process associates to a
“thin band” around the states with an average action exactly equal to zero can be made arbitrarily
small. Our formal statement of this assumption uses the following notation. Given any n ∈ N and
δ > 0, define Hδ

n ≡ {ω = (s, G)) ∈ Ωn : | 1n
∑

i∈N si| ≤ δ} as the set of all those states that, for a
population of the size of n, have their average action no farther from zero than δ. Then, we posit:

A.2: For any ϵ > 0 there exists some δ > 0 and n̂ ∈ N such that, if n ≥ n̂, µLILn (Hδ
n) ≤ ϵ.

The rationale for this assumption is derived from the idea that the set of states whose action profile
s ∈ {−1,+1}n lies in a small neighborhood around the “fragile” point of exactly equal balance
between the two actions must be quite ephemeral – hence it should be observable in the long run
only with very small probability if the population is large.

agents’ adjustments, the induced stochastic process is clearly ergodic.
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Under (A.1)-(A-2), the following proposition establishes conditions under which the function
Φ̃ behaves approximately as an ordinal potential. This notion, a relaxation of the formerly used
one of (cardinal) potential, only requires that the payoffs of a revising agent and the corresponding
changes in the potential display the same sign. That is, instead of the condition (14) considered
for the GI scenario, we now rely on the following condition:

Let ω,ω′ ∈ Ω be such that ω′ ∈ Ai(ω) for some i ∈ N . Then,
Φ̃(ω′) ≥ Φ̃(ω) ⇔ πi(ω

′;ψLILi (ω)) ≥ πi(ω;ψ
LIL
i (ω)).

(19)

As advanced, the following result establishes that the function Φ̃(·) satisfies the above requirement
with arbitrarily high probability in the long run if the population is large and the weight of social
learning is high.

Proposition 4. Let the adjustment dynamics be as in the LIL scenario and consider a sequence
of growing populations of size n, assume A.1 and A.2, and let ζ1 ̸= θ ̸= ζ2. Consider a sequence of
environments with a growing population size n and let {Ω̃n}n=1,2,... be a correspondent sequence of
state subsets such that, for each n, Ω̃n is the set of states for that population size that satisfy (19).
Then, given any ϵ > 0, there exist n̂ ∈ N and φ̂ > 0 such that if n ≥ n̂ and φ ≤ φ̂, µLILη (Ω̃n) ≥ 1−ϵ.

As explained, compared to the result established by Proposition 1 for the GI scenario, the
conclusion claimed for the LIL scenario by Proposition 4 is weaker in two respects: the function
Φ̃(·) is claimed to behave as a potential (a) only in an ordinal sense and (b) only with arbitrarily
high probability, provided the population size and the relative weight of social learning are large
enough. While the latter caveat is in line with our desire to focus on large-scale problems of
collective action where the possibilities for direct observation are severely limited by the size of
the population, the ordinal relaxation of the potential-alignment property is more problematic. In
particular, it prevents us from claiming, in full mathematical rigor, that the long-run distribution
of the process has the precise exponential form established for the GI scenario.

The previous considerations notwithstanding, we can still rely on the main idea underlying
Proposition 4 – namely, that under the specified conditions the deviations from strict potential
alignment should be typically small – to suggest a close parallelism between the theoretical approach
pursued in the GI and LIL scenarios. More concretely, we conjecture that the same exponential
function of the potential Φ(·) used under global GI should approximate well, when applied to
Φ̃(·), the long-run behavior of the LIL dynamics. This leads us to positing that the probability
distribution µLILη (·) defined, for every ω = (s, G) ∈ Ω, as follows:

µLILη (ω) =
eηΦ̃(ω)∑

ω′∈Ω e
ηΦ̃(ω′)

=
eηΦ̃(s,G)∑

G′∈Gn

∑
s′∈{−1,+1}n e

ηΦ̃(s′,G′)
, (20)

approximates well the invariant distribution of the adjustment process under LIL.

To explore the validity of the former claim, we have conducted a wide range of numerical
exercises that approach the issues from a variety of different complementary angles. First, at the
most basic (but also only indirect) level, we have obtained the results displayed in Figure 2, which
show a strong correlation between the changes in payoffs and the function Φ̃(·). Second, proceeding
in a more direct manner, we have generated a wide range of simulations of the LIL-based adjustment
process that – as a counterpart of those shown in Figure D.1 for the GI scenario in Supplementary
Appendix D.1 – trace empirically the average values for key population variables as one changes
the model parameters. These numerical results, found in Figure D.2 in Supplementary Appendix
D.2, are closely aligned with the theoretical predictions induced by the distribution µLILη (·) defined
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Figure 2: The left and middle panels show a typical trajectory of the quasi-potential Φ̃, while the right panel shows
the correlation between the change in the quasi-potential and in payoffs, ∆Φ̃ and ∆πi. The parameters used are the
same as in Figure 1.

by (20). And third, we have also carried out a parameter-recovery exercise that we believe delivers
the strongest support for our overall approach. For, in an integrated manner, not only does it
support the theory but also the econometric methodology we have pursued to bring that theory to
the data. This exercise is explained in detail in Supplementary Appendix I, once the econometric
methodology has been presented formally. Here we just provide a brief and informal advance. It
starts with the generation of artificial data obtained by simulating the dynamics of our process
according to the rules posited in our theoretical model. And, as a cross-check on the validity of
our general approach, we do this not only for the LIL scenario but also for the GI scenario. We
then apply our composite-likelihood econometric approach – based on either the distribution µGIη (·)
or µLILη (·), depending on the scenario considered – to such artificially generated data and obtain
(highly significant) estimates for all of the model parameters involved in each case. Finally, we
contrast the estimated parameters with the ones actually used to generate the data and find that
they are very close in both contexts. In view of form displayed by µLILη (·) in (20) we can again
claim for the LIL scenario that the long-run probability across adjacent states imputed by this
distribution changes in the same direction as their respective values of the function Φ̃(·) and that,
as a counterpart of (16), the set of states that maximize such probability, denoted by Ω∗∗, maximize
such probability, i.e.,

Ω∗∗ ≡ {ω ∈ Ω : Φ̃(ω) ≥ Φ̃(ω′) ∀ω′ ∈ Ω} = {ω ∈ Ω : µLILη (ω) ≥ µLILη (ω′) ∀ω′ ∈ Ω}. (21)

The following proposition characterizes the set Ω∗∗, as a function of the parameters of the model,
under the same conditions characterizing Ω∗ in Propositions 3 for the GI scenario.15

Proposition 5. Assume all agents form their beliefs as prescribed by the function ψLIL(·) given
by (9) and suppose θ > ζ1. Let n+ = #({γi = +1 : i ∈ N}) and ν+ = n+/n. Then there
exists some n̂ ∈ N such that if n ≥ n̂, the set Ω∗∗ is generically a singleton and its unique state
ω∗∗ = (s∗∗, G∗∗) ∈ Ω∗∗ can be characterized as follows:

(a) If κ > 1, the action profile in s∗∗ = (s∗∗i )i∈N has s∗∗i = −1 for all i ∈ N .

(b) If κ < 1, the action profile in s∗∗ = (s∗∗i )i∈N is such that:

(i) when θ < ζ2, for all i ∈ N we have s∗∗i = γi;

(ii) when θ > ζ2, for all i ∈ N we have s∗∗i =

{
+1 if κ < 2ν+ − 1,

−1 if κ > 2ν+ − 1.

(c) If θ < ζ2, G∗∗ is segmented into two (completely connected) cliques, Kn+ and Kn−n+, with

15In Supplementary Appendix E.2 we provide a characterization for any finite population size n.
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no cross-links and including all agents of types +1 and −1, respectively.

(d) If θ > ζ2, G∗∗ coincides with the complete network.

The previous proposition provides an interesting contrast with the counterpart result (Propo-
sition 3) we obtained for the GI scenario. As advanced, the main difference derives from the fact
that, in the present LIL scenario, the action profiles displayed by the state ω∗∗ ∈ Ω∗∗ as parame-
ters change are not independent of the conditions that shape the network. Indeed, it is still true
that the properties of the (endogenous) network (that is, whether it is complete or segmented)
exclusively depend on whether or not the linking cost across types, ζ2, exceeds the local-interaction
parameter θ. However, the important difference to note is that, in the LIL scenario, what network
architecture then arises has a key bearing on how the cost κ affects the action choices. Thus, if
the network is fragmented – because θ < ζ2 and (c) applies – then (a) and (b.i) indicate that the
action choice depends solely on whether the cost κ is lower or higher than 1, independently on what
is the fraction ν+ of agents of type +1. Instead, the interplay between κ and ν+ becomes again
important, just as it was the case in the GI scenario, when θ > ζ2. For, in this case, (d) implies
that the network is complete and (b.ii) applies. In the following subsection we further elaborate on
this interplay between network architecture and action choice, discussing the insights it contributes
to the question and how even large populations are sometimes able to tackle demanding collective
action problems.

3.3. Achieving Collective Action under Small Noise
The analysis conducted in the previous subsection leads to some useful insights on how the

alternative informational assumptions contemplated by our two scenarios, GI and LIL, bear on the
process through which a large population may attain collective action. This can be assessed by
comparing the action profiles prevailing in each context in the states ω∗ and ω∗∗ characterized,
respectively, in Propositions 3 and 5. As explained before, the contrast between these two contexts
arises when their different belief-formation rules interplay with homophily in network formation,
resulting from a gap in the linking costs incurred by agents of the same or different types. Focusing
for the moment on the simple question of whether the induced states induce some positive fraction
of agents choosing action +1, a graphical summary of the situation is provided in Figure 3. There
we see that while the condition κ < 1 is always necessary for both scenarios (i.e., action +1 cannot
be too costly), only under LIL is it also sufficient. For, under GI, in order to attain some degree
of collective action two additional conditions are needed. One is that the individuals of type +1
are a majority of the population (i.e., represent more than 50% of it). A second condition is that
κ < 2ν+ − 1. This inequality is obviously more stringent than simply requiring that κ < 1, except
for the extreme case where ν+ = 1, i.e., when essentially all individuals in the population are of
type +1. Overall, therefore, we conclude that, in the presence of consequential homophily, the LIL
scenario provides a much wider set of conditions for which, in the stationary configuration of the
adjustment process, there is some significant extent of collective action. Those conditions not only
pertain to the magnitude of the cost incurred by joining it but, most importantly, to the fraction
of the population whose type favors doing so (which is subject to no lower bound).

Another complementary perspective to understand the contrast between the GI and LIL scenar-
ios is to compare how the fraction of the population choosing action +1 in states ω∗ and ω∗∗, which
we respectively denote by ς∗+ = |{i ∈ N : s∗i = +1}|/n and ς∗∗+ = |{i ∈ N : s∗∗i = +1}|/n, depend on
the parameters ν+ and κ. This is graphically represented in Figure 4, which considers separately
the case where either one of these parameters unilaterally changes while the other remains fixed
at values ν̂+ and κ̂ such that ν̂+ = 1

2(1 − κ̂) = 3
2 . Note that this relationship defines a point in

the corresponding parameter space where, according to Proposition 3, there is an abrupt transition
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Figure 3: Comparing the action profiles of the states ω∗ and ω∗∗ when θ < ζ2, for the GI model (left panel) and the
LIL model (right panel), respectively.

under GI across the two extreme population fractions, ς∗ = 0 and ς∗ = 1). This transition is
sharply seen in the upper two panels of Figure 4, and is also found in the lower panels for the LIL
scenario when θ > ζ2, and therefore the network G∗∗ prevailing in ω∗∗ is complete. Instead, when
the opposite inequality θ < ζ2 holds and the induced network G∗∗ is segmented along agent-type
lines, we find that the fraction ς∗∗ of the population choosing action +1 grows linearly for all values
of ν+, even very small ones. This shows in an especially stark manner the interplay between links
and actions that, as already discussed, can arise in the LIL context. As we shall explain shortly,
this gives the process a plasticity that has important dynamic implications.

So far we have interpreted the singleton sets Ω∗ and Ω∗∗ as identifying the unique states that
enjoy the highest probability in the unique invariant (or stationary) distribution of the process. But,
in line with what is common in the modern evolutionary game-theoretic literature (see, e.g., the
seminal papers by Kandori et al. (1993) and Young (1993)), we can also consider the limiting case
of vanishing noise (i.e. an arbitrarily large η) and arrive at the following dynamic selection result:
in the long run, as the noise becomes progressively small, the GI- and LIL-induced processes will
remain almost surely (i.e., with an arbitrarily high probability) in the vicinity of the corresponding
aforementioned sets – Ω∗ or Ω∗∗ respectively – independently of initial conditions. The states
included in those sets are customarily labeled the stochastically stable states (SSS) of the processes.
Naturally, the practical relevance of this notion hinges upon the question of “how long is the long
run.” We explain next that the answer to this question turns out to be very different behavior in
the two scenarios we considered.

On the one hand, for the GI scenario one can readily adapt well-known results in the literature
(see, e.g., Ellison (1993)) to claim that the convergence to its long-run predictions is very slow
for large populations, with an expected delay that grows exponentially with population size. This
suggests that such predictions are problematic descriptions of what can be expected to happen
within realistic time scales. For, in particular, it indicates that even when the unique SSS involves
all agents joining collective action (i.e., all playing action +1, as it happens when κ < 2ν+−1), that
prediction can be expected to be eventually a good approximation of the situation only within a
time frame that is practically irrelevant if the population is moderately large and, say, most agents
start choosing −1.
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Figure 4: The fractions of the population ς∗+ and ς∗∗+ choosing action +1 in the states ω∗ and ω∗∗, respectively, as a
function the parameters ν+ and κ.

In contrast, the situation is different for the LIL context. The reason for this is well illustrated
in Figure 4 – refer, more concretely, to its lower-left panel. There we see that, provided that the
cost κ incurred by action +1 is not too high (lower than 1), the SSS of the corresponding process
always involves a fraction of agents choosing action +1 if there is that same fraction of agents of the
homonymous type. Indeed, this applies no matter how small such a fraction might be. In essence,
the reason why those heteromorphic configurations can arise and persist in the long run should
be clear: since agents’ expectations are formed through local observation and learning, a clique
of agents with the required bias/type can continue choosing action +1 – and robustly so even if
they are in the minority – if they continue holding expectations that the population as a whole is
aligned with them. Their expectation-formation process feeds on what they do and they expect,
thus making the configuration stable and quite resistant to noise. This then makes a transition to
such a configuration relatively “easy” (or likely) to implement from other states, by just adding
gradually to some initial (possibly very small) “seed” of individuals choosing action +1 other agents
with a bias towards that action.

Mathematically, the logic underlying the aforementioned considerations has been systematically
articulated by Ellison (2000) through what he labels “step-by-step evolution” and the notions of
radius and modified co-radius. Intuitively, while the radius captures how much the process needs
to rely on noise to abandon the basin of attraction of an otherwise stable state, the modified co-
radius reflects an analogous idea but concerning the opposite transition, i.e., a move into the state’s
basin of attraction. Stochastically stable states are then those for which the modified co-radius
(which allows for a concatenation of robust intermediate transitions) is lower than their radius.
Two further interesting properties of the modified co-radius of any given stochastically stable state
are: (a) it determines the expected waiting time required by the process to arrive at that state
from arbitrary initial conditions; (b) when such a transition relies on intermediate steps that are
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Figure 5: The convergence times, τ∗, to a configuration with at least one-quarter of the population choosing action
+1 for different population sizes (n) starting from an empty network, Kn, where all agents choose action si = −1
and have idiosyncratic preferences γi = +1 for the GI and the LIL models. The markers represent averages obtained
across 1000 Monte Carlo runs under the following parameters: n = 5, . . . , 100, η = 1, λ = χ = ξ = 1, κ = 0.1,
φ = 0.5, θ = 0.02, ζ1 = 0.01, ζ2 = 1, ρ = 1.5/n (left panel), ρ = 2/n (middle panel), and ρ = 2.5/n (right panel).

relatively likely – in particular, enjoy a probability that is independent of the population size –
the full path is comparably likely as well. This line of reasoning can also be applied to our model
and, for the LIL scenario, exploit the fact its network-based procedure of belief formation allows
transitions to be implemented through robust intermediate steps, whose probability is independent
of population size. This, in the end, implies that its SSS-prediction for the LIL scenario is unaffected
by the “large-population curse” and, therefore, the speed at which the process converges to it as
the population grows large should be much faster than in the GI context.

Due to space limitations, a formal rigorous analysis of the speed-of-convergence issue just dis-
cussed is beyond what is feasible to do in this paper. Instead, next we present some simple numerical
simulations that may help illustrate our main point. The exercise involves a large set of simulation
runs separately conducted for the adjustment processes operating in either the GI or LIL scenario
process. The underlying parameter conditions used in all cases are such that they yield the same
(unique) SSS-induced prediction in both scenarios: a state where all agents choose action +1 and
they are segmented in type-homogenous cliques. Every simulation run is also conducted from the
same initial state where all agents in the population choose action −1 and the social network is
empty (i.e., there are no prevailing links). We then ask the question of what is, on average over
1000 independent runs, the delay incurred in reaching a state where one-quarter of the population
chooses action +1.

The different panels displayed in Figure 5 show how the answer to the previous question depends
on two of the parameters that best embody the tension lying at the core of the collective action
problem:

• the weight ρ that modulates the payoff importance of coordinating with the whole population;
• the population size n bearing on the information/communication complexity of coordination.

A marked contrast between the two scenarios arises as the population grows. For, already at a
population size as small as n = 100, the divergence on their induced delays becomes quite wide
when ρ increases. This provides further support to our point that a more realistic model of how
expectations are formed in large populations (i.e., through local observation and learning, as in the
LIL context) can also shed light on how large populations can address the coordination challenge
involved in collective action.

4. Data
The empirical application of our model uses online social network data from Twitter focusing

on riots and demonstrations in Egypt during the Arab Spring in 2013 (cf. Borge-Holthoefer et al.,
2015). We use Twitter data to study protest behavior in Egypt for two reasons. First, social media
data provides fine-grained, micro-level data on individuals’ decisions to gather and disseminate
political information in countries with authoritarian regimes where traditional media is partly
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controlled via the state (Steinert-Threlkeld, 2017). As a result, information contained in social
media closely reflected the views in the offline world. Second, among social media platforms,
Twitter was the main social networking platform for opinion exchange over Egypt’s Arab Spring
(cf. Clarke and Kocak, 2020). The empirical analysis leverages protest-related tweets surrounding
the Second Egyptian Revolution, where the incumbent Islamist president, Mohamed Morsi, is
ousted and the military returns to power.16

Sample. We collected around 6 million Arabic language tweets based on data from Borge-
Holthoefer et al. (2015) and focus on the period between July 4, 2013, when the military overthrew
the regime of President Morsi, and August 19, 2013, when the scales of demonstrations and the
volumes of tweets reached a saturation point.17 Our analysis focuses on users who have posted
more than two tweets that are either retweets or include mentions of other users, and have fewer
than the 90th percentile of followers (2,918 followers). It provides us with a sufficient sample of
tweets for each user, enabling us to classify them by their political affiliation and gender using their
tweet text. Restricting users based on the number of followers is designed to remove accounts of
politicians, celebrities, and the accounts of news and other media sources. The resulting estimation
sample consists of 225,578 users.

Network construction. The theoretical model constructed in Section 2 employs the notion
of bilateral, undirected, and unweighted links to represent a social network. We construct our
counterpart empirical social network to match these features. Bidirectional and undirected links
between Twitter users are constructed using retweets of original tweets and the use of @-mentions
within tweets. In particular, we define a connection between two users A and B to exist when (i)
A has either retweeted or @-mentioned user B, and (ii) B has either retweeted or @-mentioned user
A. This notion of bidirectional links between users on social media can be thought of as “strong
ties” (Shi, 2014).

4.1. From Text to Quantitative Measurement
The remainder of our empirical data is constructed using tools from Natural Language Pro-

cessing (Ash and Hansen, 2023; Gentzkow et al, 2017). We create three variables from the text of
each user’s tweets: (i) whether a user is “rioting” (i.e., is the pro- or anti-military intervention),
(ii) the political affiliation of each user (Secular vs Islamist), and (ii) the gender of each user. The
construction of each variable is treated as an independent binary classification problem where we
infer each user’s trait from the text of their tweets. The classification models are designed to predict
stance, affiliation, and gender at the tweet level. We use majority voting within tweets from an
individual to aggregate predictions from multiple tweets to a unique prediction for each individual.

Our approach leverages the latest generation of pre-trained BERT language models (Devlin

16A more detailed account of the historical context can be found in Supplementary Appendix F. In particular, our
analysis covers Phase IV of the Egyptian Arab Spring discussed in Supplementary Appendix F.2.

17Supplementary Appendix G.1 describes the data collection process in more detail. In addition to the date window
featuring the largest scale of demonstrations over this phase of Egypt’s Arab Spring driving our decision on the time
horizon to focus our study rests on when the tweets originally collected by Borge-Holthoefer et al. (2015) identify
protest-relevant tweets. Borge-Holthoefer et al. (2015)’s data collection process stopped updating the search terms
used to identify and collect protest-related tweets in mid-August 2013. As the hashtags and keywords used by
protesters continue to evolve, their collection process no longer includes all relevant tweets. Using information on
the number of protests from the Armed Conflict Location and Event Data Project (ACLED, 2019) over the same
sampling period, we find a significant concurrence of Twitter message volumes and real-world protests The Pearson
correlation coefficient between the two indices, ACLED and Twitter, is positive (0.32). Note that we only have
information on the number of protests from ACLED but not their size. This will likely lead to an underestimate of
the correlation between the actual protest participation and the volume of protest-related Twitter messages
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et al., 2018). The pre-trained model is then “fine-tuned” for each of the three specific classification
tasks mentioned above. Since pre-trained language models are built to achieve a general under-
standing from a diverse set of text inputs, the fine-tuning approach can achieve good performance
even when only a small number of training samples are provided (Ash and Hansen, 2023). We
create three fine-tuned models using a pre-trained BERT language model developed for Arabic,
“AraBERT” (Antoun et al., 2020). AraBERT is the dominant pre-trained language model for the
Arabic language and has state-of-the-art performance across a large range of Arabic language tasks
(Abdul-Mageed et al, 2021).18 For each fine-tuning task, we add a feed-forward Softmax classifi-
cation layer to the top of the AraBERT encoder output. The classifier and the pre-trained model
weights from AraBERT are trained jointly during fine-tuning to maximize the log-probability of
correct class assignment. Tweets are cleaned through a two-step procedure before being passed
across AraBERT: (i) words are segmented using the “Farasa segmenter” (Abdelali et al., 2016)
and (ii) fed through a “SentencePiece” tokenizer (Kudo and Richardson, 2018). Each fine-tuned
AraBERT model uses a probability threshold of 0.5 when predicting classes. After fine-tuning, we
use the model to predict all tweets written by users included in the estimation sample.

Pro- vs. anti-military intervention. We want to identify which users are rioting. However,
tweets don’t explicitly tell us a user’s stance. To achieve this, we build a classifier that identifies
a user’s pro- vs. anti-military intervention disposition from the text of their tweets. We take
this as an indication of an individual’s willingness to riot or protest. Throughout our empirical
analysis, the action +1 is defined as an anti-military intervention stance, and −1 denotes a pro-
military intervention stance. As training data, we use 4,150 tweets that are hand-classified into
the pro- or anti-military intervention stances by two human coders proficient in Arabic.19 We then
build a binary classifier of tweets (pro- or anti-military intervention) using a fine-tuned AraBERT
model. We use 80% of the annotated tweets as training data for fine-tuning and the remaining 20%
to validate model performance on unseen data. The out-of-sample performance is shown in the
bottom left panel in Figure 6. The action classifier has a high accuracy (representing the number
of correctly classified data instances over the total number of instances) with the corresponding
confusion matrix used to compute the accuracy shown in the top right panel in Figure 6. Also,
the F1-score (the harmonic mean of precision and recall) is high. This shows that our classifier
performs well in classifying the users’ actions from the tweets’ texts.

18We use the ‘v2’ AraBERT model using a maximum sequence size of 128 tokens and a batch size of 16. We set
the learning rate to 2e-5 and fine-tune each model for 4 epochs (Tamkin et al., 2020; Zhang et al., 2020). The model
from the fourth epoch is used for prediction purposes in all tasks.

19To check for cross-coder consistency, 1,000 tweets are the same for both coders. We obtained a consistency
measure of Cohen’s κ = 0.67. This indicates a sufficiently strong agreement between the two coders (whereby
agreement due to chance is factored out).
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a) b) c)

Figure 6: The top panels show the classifier confusion matrices for action and political affiliation, while the bottom
panels show the corresponding classifier performances (F1-scores and accuracies). The left column a) shows the action
classifier (anti-MI vs. pro-MI), the middle column b) the political affiliation classifier (Islamist vs. secular), and the
right column c) the gender classifier (male vs. female).

Political affiliation. We also leverage the text of tweets to infer the political ideology of Twitter
users. We utilize an already annotated sample of 20,886 Egyptian Twitter users and their political
affiliations provided by Weber et al. (2013) to fine-tune an AraBERT model aimed at predicting
whether tweets are written by a Twitter user with either Islamist or Secular political views.20 The
matched users are randomly split 80/20 into training/test samples for the AraBERT fine-tuning.
All tweets by a user allocated to the test (training) sample are used in the parameter fine-tuning
(evaluation). Out-of-sample performance of the political affiliation classifier at the Twitter user
level is reported in the middle panel of Figure 6. The high F1-score and accuracy, together with
the corresponding confusion matrix shown in the top middle panel in Figure 6 indicate that the
classifier succeeds at identifying political affiliation from user tweets. Supplementary Appendix
Figure G.1 shows the fraction of Islamist versus secular users over the sample period. Note that in
our sample, the majority of agents are Islamists, and that is why the action +1, which is protesting
against the military intervention, dominates (around 73%, see also Table 1). An illustration of the
users’ political affiliations and links between them can be seen in Supplementary Appendix Figure
G.2. The figure shows that users are mainly connected with other users with the same political
views.

Gender. To classify the gender of Twitter users, we proceed analogously to our approach on
political affiliation, fine-tuning a third AraBERT model at the tweet level before aggregating them
to a user-level prediction. For training data, we source the gender classification of a subset of
Egyptian Twitter users from Weber et al. (2013), which provides gender classifications alongside
the political affiliations utilized above.21 Users are again split 80/20 to form training and test
samples. The out-of-sample performance of our gender classifier at the user level is shown in the
bottom right panel in Figure 6. High F1-score and accuracy score, along with the confusion matrix
(shown in the top right panel in Figure 6) indicate that the classifier performs well at predicting

20In practice, we build a training sample by matching the classified users in Weber et al. (2013) to users in our
sample Further details about the construction of the training data are available in Supplementary Appendix G.2.

21Because tweets about riots might not be sufficiently informative about a user’s gender, we augment the protest-
relevant tweets with a larger sample of tweets written by these users for fine-tuning. To do so, we extract the most
recent 3200 tweets from each of the users in Weber et al.’s data that match our data from the public Twitter API.
The API pull was implemented in December 2020. 3200 tweets is the maximum allowed via Twitter’s Public API.
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Table 1: Summary statistics.
Mean Std. Max Min

Action 0.48 0.87 1 -1
Female 0.10 0.30 1 0
Islamist 0.62 0.49 1 0
Number of followers 472.71 569.10 2918 1
Network degree 0.83 2.13 47 0
Number of nodes 225,578
Number of links 93,762

gender from text.

Table 1 provides summary statistics of the variables used in the empirical analysis. In our
sample, 74.24% of users have the action identified as one, and the majority are male and Islamist,
with an average of 0.83 connections and 472 followers.

5. Empirical Analysis
5.1. Identification and Estimation Method

The stationary distributions corresponding to the GI and LIL scenarios in (15) and (20) are
known as Gibbs measures (or the Gibbs random field; see cf. Wainwright and Jordan, 2008), which
provide us with a probability (likelihood) measure for estimating unknown structural parameters
in the potential functions (11) and (17) from the empirical data described in Section 4. Before
proceeding with estimation, we first reduce the dimensionality of unknown parameters in the model
by specifying the idiosyncratic preference γi and the linking cost ζij in (11) and (17) as functions
of observed and unobserved individual characteristics:

γi = x⊤
i β + τzi, (22)

and

ζij = ϕ0 +
K∑
k=1

hk(xik, xjk)ϕk − zi − zj , (23)

where xi = (xi1, . . . , xiK)⊤ is a K × 1 vector of exogenous regressors including individual gender,
political affiliation, and log number of Twitter followers, while β is the corresponding vector of
unknown parameters. The variable zi represents an individual random effect which captures un-
observed individual heterogeneity and is assumed to be identically and independently normally
distributed with mean zero and variance σ2z , i.e., zi ∼ N (0, σ2z). The function hk(xik, xjk) in ζij
can be either an indicator function (1(xik = xjk)) when xik is a dummy variable or a distance
function (|xik − xjk|) when xik is continuous, reflecting homophily (or heterophily). The higher
values of random effects zi and zj in ζij lead to a lower linking cost, capturing the extent of inter-
agent heterogeneity due to unobservables (Dzemski, 2019; Graham, 2017). We denote the unknown
parameters in ζij by ϕ = (ϕ0, ϕ1, . . . , ϕK).

There are two main identification issues regarding our model specification. First, the noise
parameter η in the logistic disturbance ε of (15) and (20) is not separately identifiable from other
parameters in the (quasi) potential function, a commonly known problem in discrete choice models.
Therefore, following the usual practice in this literature, we set η to one during estimation. Second,
in the GI potential given by (11), we capture the global conformity effect ρ through the “leave-one-
out” sum of actions,

∑n
j ̸=i sj . When the sample size n is large, the leave-one-out sum has only a

negligible variation at the individual level and therefore the coefficient ρ is hardly disentangled from
the rioting cost κ. To deal with this identification problem, we replace the “leave-one-out” sum
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with the constant (n− 1)s̄ in (11), where s̄ = 1
n

∑n
j=1 sj is the sample mean of actions, and drop κ

for the GI scenario. To mark this modification, we denote the coefficient in front of (n− 1)s̄ in this
modified model by ρ̌. A similar problem does not appear in the LIL scenario of (17) because the
global conformity effect can be identified through variations on the individual belief ψLILi . It is also
worth mentioning that identification of individual random effect zi is made possible by exploiting
variations on link decisions, ai1, ai2, ai3, · · · of agent i in a similar manner as an individual fixed
effect in panel data. More specifically, as zi appears in all link decisions of agent i, we can identify
zi from the conditional probability,

µ(aij = 1|s, G−ij) =
exp(θsisj − ϕ0 −

∑K
k=1 hk(xik, xjk)ϕk + zi + zj)

1 + exp(θsisj − ϕ0 −
∑K

k=1 hk(xik, xjk)ϕk + zi + zj)
.

Given zi is identified, we can also identify the coefficient τ in γi in (22).

The main challenge to the estimation of the Gibbs measures in (15) and (20) comes from the
appearance of a normalizing constant in the denominator, which involves the evaluation of the
(quasi) potential function over all possible networks G ∈ Gn and action profiles s ∈ {−1,+1}n.
When the network size is large, this normalizing constant becomes intractable, and thus directly
calculating the likelihood for conventional frequentist or Bayesian estimation is not possible.22
The most commonly used methods to tackle such estimation challenges include the composite
likelihood approach (Lindsay, 1988; Varin et al., 2011),23 the Monte Carlo simulated likelihood
approach (Geyer and Thompson, 1992), the Bayesian exchange algorithm (Møller et al., 2006;
Murray et al., 2006) with exact sampling, or the Bayesian double Metropolis-Hastings algorithm
(Liang, 2010; Mele, 2017). Given the enormous sample size faced in the present study, the latter
simulation-based methods are not feasible, and therefore we adopt the composite likelihood method
to estimate our model.24 The composite likelihood for our model is defined as

µ(s|G)µ(G|s), (24)

where µ(s|G) and µ(G|s) represent the conditional likelihood function of the action given the
network and the network given the actions, respectively. We first look at µ(s|G). Under the GI
scenario, it is

µ(s|G) =
exp

(∑n
i=1(x

⊤
i β + τzi + ρ̌(n− 1)s̄)si +

θ
2

∑n
i=1

∑n
j ̸=i aijsisj

)
(G)

, (25)

where (G) =
∑

s∈{−1,+1}n exp(
∑n

i=1(x
⊤
i β + τzi + ρ̌(n− 1)s̄)si +

θ
2

∑n
i=1

∑n
j ̸=i aijsisj). Similarly,

22Note that there are 2n possible action profiles s ∈ {−1,+1}n and 2(
n
2) possible networks G ∈ Gn with n agents.

23In general, the composite likelihood for y = (y1, . . . , yn) can be written as f(y) =
∏R

r=1 p(yAr |yBr ) where
observations are divided into R blocks and the block Br = N \Ar with N = {1, 2, · · · , n} denotes the index set of y.
The well-known pseudo likelihood proposed by Besag (1975) and Strauss and Ikeda (1990) for the spatial processes
refers to a special case where the block Ar contains just a singleton.

24Several theoretical results on the asymptotic consistency of the composite likelihood estimation for the Gibbs
measure are available in the literature (see e.g., Bhattacharya and Mukherjee, 2018; Chatterjee, 2007; Comets, 1992).
Moreover, the simulation results in Varin et al. (2011) and Friel (2012) show that the composite likelihood method
permits reliable inference when the sample size is not too small, and the network dependence is moderate. Since our
sample size is indeed very large, and the estimated network effects shown in Subsection 5.2 are not particularly large,
the composite likelihood method is arguably an adequate estimation method to be used for our analysis.
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under the LIL scenario,

µ̃(s|G,ψLIL) =
exp

(∑n
i=1(x

⊤
i β + τzi + κ+ ρ(n− 1)ψLILi )si +

θ
2

∑n
i=1

∑n
j ̸=i aijsisj

)
̃(G)

, (26)

where ̃(G) =
∑

s∈{−1,+1}n exp(
∑n

i=1(x
⊤
i β+τzi+κ+ρ(n−1)ψLILi )si+

θ
2

∑n
i=1

∑n
j ̸=i aijsisj). Since

the conditional likelihood functions in (25) and (26) still contain intractable normalizing constants,
we also replace them with the composite likelihood function. Considering first the GI instance in
(25), the conditional probability of agent i choosing action si = 1, given all other agents’ actions
s−i and network G, is given by

µ(si = +1|s−i, G) =
exp(x⊤

i β + τzi + ρ̌(n− 1)s̄+ θ
∑n

j ̸=i aijsj)

2cosh(x⊤
i β + τzi + ρ̌(n− 1)s̄+ θ

∑n
j ̸=i aijsj)

. (27)

The conditional probability of agent i choosing action si = −1 can be similarly calculated. There-
fore, the composite likelihood of action profile s, conditional on the network G, is given by

n∏
i=1

µ(si|s−i, G) =
n∏
i=1

µ(si = 1|s−i, G)
1+si

2 µ(si = −1|s−i, G)
1−si

2 . (28)

In the LIL scenario, a similar approach can be used to compute the composite likelihood µ̃(s|G,ψLIL)
in (26):

n∏
i=1

µ̃(si|s−i, G,ψLIL) =
n∏
i=1

µ̃(si = 1|s−i, G,ψLIL)
1+si

2 µ̃(si = −1|s−i, G,ψLIL)
1−si

2 , (29)

where

µ̃(si = +1|s−i, G,ψLIL) =
exp(x⊤

i β + τzi + κ+ ρ(n− 1)ψLILi + θ
∑n

j ̸=i aijsj)

2cosh(x⊤
i β + τzi + κ+ ρ(n− 1)ψLILi + θ

∑n
j ̸=i aijsj)

.

Next, we consider the conditional likelihood of network G on a given action profile s:

µ(G|s) =
n∏
i=1

n∏
j>i

µ(aij |s, G−ij) =
n∏
i=1

n∏
j>i

exp(aij(θsisj − ϕ0 −
∑K

k=1 hk(xik, xjk)ϕk + zi + zj))

1 + exp(θsisj − ϕ0 −
∑K

k=1 hk(xik, xjk)ϕk + zi + zj)
.

(30)

Since network links are conditionally (pairwise) independent, (30) shows that the conditional like-
lihood of the network G can be represented by the product of conditional probabilities for each link
(with indicators aij). Note that even though the network links are conditionally independent given
the actions, they are not unconditionally independent due to the interdependence of actions in the
presence of the peer effect (θ ̸= 0). This is an important feature of our model that distinguishes
it from an inhomogeneous random graph model (Bollobas et al., 2007). Although computing (30)
is feasible, in the case of a large network it can still be very demanding. To further alleviate the
computational burden, we adopt the so-called case-control approach of Raftery et al. (2012), which
allows us to reduce the computational cost associated with (30) from O(n2) to O(n). To explain
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the idea, we consider the log-likelihood function based on (30)

ℓ(G|s) =
n∑
i=1

ℓi(ai.|s, G−i), (31)

where ai. denotes the ith row of matrix A and ℓi(ai.|s, G−i) ≡
∑n

j>i lnµ(aij |s, G−ij). To calculate
ℓi(ai.|s, G−i), it is useful to divide the observations in ai. into the groups of edges (“cases”) and
non-edges (“control”) and perform the following decomposition

ℓi(ai,.|s, G−i) =

n∑
j>i

aij(θsisj − ζij)− ln(1 + exp(θsisj − ζij))

=
n∑

j>i,aij=1

(θsisj − ζij − ln(1 + exp(θsisj − ζij))) +
n∑

j>i,aij=0

(− ln(1 + exp(θsisj − ζij)))

= ℓi,1 + ℓi,0. (32)

In (32), ℓi,1 and ℓi,0 stand for the log-likelihood from edges and non-edges respectively. When the
network links are sparse, the quantity ℓi,0 can be viewed as a population total statistics. This
population total can be estimated by a random sample of the population,

ℓ̃i,0 =
ni,0
mi,0

mi,0∑
r=1

(− ln(1 + exp(θsisr − ζir))), (33)

where ni,0 is the total number of zeros in the ith row of the upper triangular part of matrix A,
and mi,0 is the number of samples selected from zero entries in the ith row of the upper triangular
part of the matrix A. ℓ̃i,0 is an unbiased estimator of ℓi,0 given the random samples. When the
network size is large, we can choose a small mi,0 to compute ℓ̃i,0 and thus reduce the amount of
computation needed.25

An additional computational issue concerning the composite likelihood function of (24) is that
one needs to integrate over the random effects z = (z1, . . . , zn) in order to obtain the likelihood
for observed data, i.e., µ(s|G)µ(G|s) =

∫
µ(s|G, z)µ(G|s, z)f(z)dz. The frequentist approach typi-

cally uses Gaussian quadratures or Monte Carlo integration to evaluate such a likelihood function.
However, given the high-dimensional integration, performing these methods can still be cumber-
some. As an alternative approach, Bayesian Markov Chain Monte Carlo (MCMC) estimation
has shown to be effective for estimating nonlinear models with random effects (Zeger and Karim,
1991). Thus, in this paper, we apply the Bayesian MCMC approach to estimate the unknown
model parameters Θ = (θ, ρ,β⊤, τ, κ,ϕ, σ2z) and unobserved random effects z with the posterior
distribution p(Θ, z|s, G) derived based on the composite conditional likelihoods in (24). The specific
details regarding the specifications of prior distributions and the MCMC procedure can be found
in Supplementary Appendix H. To assess the finite sample performance of the proposed estimation
approach, we employed a Monte Carlo simulation exercise on parameter recovery. Detailed infor-
mation on the simulation design and the outcomes can be found in Supplementary Appendix I.
The results affirm the effectiveness of the proposed estimation approach.

25In this study, we set mi,o = 100 + 5
∑

j ̸=i aij to obtain the empirical results in Subsection 5.2 and simulation
results in Supplementary Appendix I. To check the robustness of the empirical results with respect to the choice
of mi,o, we have also tried mi,o = 1000 + 5

∑
j ̸=i aij and found the results, as shown in Tables J.1 and J.2 of

Supplementary Appendix J, are quantitatively unchanged.
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Table 2: Estimation results for the global information (GI) sce-
nario.

with random w/o random
effects effects
(1) (2)

Local spillover (θ) 0.1732∗∗∗ 0.2287∗∗∗
(0.0031) (0.0020)

Global conformity (ρ̌) 3.09e-6∗∗∗ 3.07e-6∗∗∗
(9.16e-8) (7.76e-8)

Individual preference

Female (β1) -0.0633∗∗∗ -0.0636∗∗∗
(0.0103) (0.0072)

Islamist (β2) 0.1026∗∗∗ 0.1054∗∗∗
(0.0054) (0.0046)

(Log) Number of followers (β3) 0.0117∗∗∗ 0.0088∗∗∗
(0.0016) (0.0015)

Random effect (τ) 0.0057∗∗∗ –(0.0006)
Linking cost

Constant (ϕ0) 14.7484∗∗∗ 12.5889∗∗∗
(0.0195) (0.0077)

Same gender (ϕ1) -0.1661∗∗∗ -0.1908∗∗∗
(0.0134) (0.0082)

Same religiousness (ϕ2) -0.0762∗∗∗ -0.0033
(0.0080) (0.0058)

Diff. in followers count (ϕ3) 0.0871∗∗∗ 0.0986∗∗∗
(0.0033) (0.0022)

Variance of random effect (σ2
z) 2.1568∗∗∗ –(0.0178)

Sample size (# of nodes) 225,578

Notes: For the purpose of identification, we replace ρ
∑n

j ̸=i sj with
ρ̌(n − 1)s̄ and drop κ in the GI scenario. The parameter estimates re-
ported in this table are the posterior mean and the posterior standard
deviation from the Bayesian MCMC sampling procedure. The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density
interval (HDI) of the corresponding draws does not cover zero.

5.2. Estimation Results
We conducted MCMC sampling over 30,000 iterations.26 After discarding the initial 5,000

iterations for burn-in, we derived the posterior mean and posterior standard deviation from the
remaining converged draws, which we use to derive our estimation results. The estimation results
of the GI and LIL scenarios are reported in Tables 2 and 3, respectively. In each table, column (1)
presents the estimation results with individual random effects – capturing unobserved heterogeneity
– and column (2) presents the results without individual random effects. Our first finding is that
both the local and global interaction effects measured by θ and ρ are, as expected, positive and
significant in both columns. Comparing, however, the two columns we can see that the estimates of
the local spillover effect (θ) and other coefficients are biased when failing to control for individual
unobserved heterogeneity through the inclusion of random effects. In particular, the estimate of
the local spillover effect (θ) in the GI scenario is upward biased by 32%; and in the LIL scenario
it is upward biased by 126%; together with a 27% downward bias on the estimate of the global
conformity effect in the LIL scenario. This bias stems from individual-specific factors that affect
both, rioting behavior and network formation (correlated effects) that cannot be accounted for in
the model without random effects (cf. Hsieh et al., 2016). We further analyze the direction of this
bias in Supplementary Appendix I with artificial data by comparing the models with and without
random effects. The fact that the global conformity effect (ρ) is significant in Table 3 provides a
strong motivation for the belief-based formulation process under local information. We therefore
use the LIL scenario as the benchmark model for the different counterfactuals analyzed in Section

26For the implementation details see Supplementary Appendix H.
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6.

Moreover, we obtain an estimate of the weighting parameter φ for the belief updating in (6)
equal to 0.0961, which suggests that, in general, the weight that agents put on local average beliefs
is more than nine times larger than the weight put on local average actions in updating their own
beliefs. Such an importance given to beliefs by our estimates motivates us, in Subsection 6.2, to
study a counterfactual in which we explore how the manipulation of beliefs towards a specific action
impacts overall rioting behavior.

The results also confirm that various sources of heterogeneity, as captured by the idiosyncratic
preference γi, play a prominent and intuitive role in rioting decisions. Specifically, we find that
females are less likely to support (or possibly attend) riots. On the contrary, popular individuals
(who have more followers on Twitter) and Islamists (who are major supporters of Morsi) are more
likely to support or attend riots. The individual random effects also show a positive effect, as
captured by the estimate of τ . In the LIL scenario, we obtain a negative estimate of κ. This
suggests that, in the Egyptian revolt against the military that we study, the population perceived,
on average, that the intrinsic costs and risks entailed were more than offset by the corresponding
benefits of joining in. Finally, in terms of the linking costs, our estimation results show a high
constant cost and a clear homophily pattern in which similar characteristics (e.g., same gender or
similar religiousness) lower those costs.

In Table 3, columns (3) and (4) further report estimation results obtained when we omit the
local spillover effect and the global conformity effect, respectively. These results show that when
one of the two aforementioned effects is omitted, the other effect is confounded, leading to an
upward estimation bias. This finding illustrates the importance of controlling for both local and
global interaction effects simultaneously, as they both play an indispensable role in determining
people’s collective actions.

6. Counterfactual Analyses
Building upon the estimation results obtained for the LIL scenario in Subsection 5.2, we can

perform various counterfactual analyses in order to investigate the effect of changing specific single
parameters of the model, while keeping the remaining ones at their estimated values in column (1)
of Table 3. The impact of these changes on the different outcome variables is assessed through
the corresponding invariant distribution µLILη (·) in (20).27 In what follows, we describe our results
for two specific implementations. In the first one, we examine the role of linking costs in affecting
rioting behavior. In the second, we study how biasing beliefs towards a specific action can influence
the extent of rioting.

6.1. Linking Costs and Rioting Behavior
During the protests against the Egyptian government, mobile phone operators were instructed

to suspend services in selected areas, with internet access being blocked and mobile phone and text
messaging services disabled or working only sporadically (Kravets, 2011). These interventions by
the government were aimed at suppressing protests by making it harder for people to communicate
and coordinate via online social media. Similar interventions have also been undertaken in other
countries (e.g., China), where social media platforms such as Facebook, YouTube, and Twitter
were domestically blocked, so that users could use them only indirectly via a VPN service (Willnat

27To simulate artificial network and outcome data from µLIL
η (·), we follow the procedure in Supplementary Ap-

pendix I.
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Table 3: Estimation results for the local information and learning (LIL) scenario.

with random w/o random w/o local w/o global
effects effects spillovers conformity
(1) (2) (3) (4)

Local spillover (θ) 0.0705∗∗∗ 0.1596∗∗∗ – 0.2289∗∗∗
(0.0035) (0.0028) (0.0026)

Global conformity (ρ) 2.37e-6∗∗∗ 1.72e-6∗∗∗ 3.03e-6∗∗∗ –(5.03e-8) (3.86e-8) (3.22e-8)
Weight of local observation (φ) 0.0961∗∗∗ 0.0805∗∗∗ 0.1066∗∗∗ –(0.0051) (0.0041) (0.0035)
Individual preference

Female (β1) -0.0553∗∗∗ -0.0542∗∗∗ -0.0564∗∗∗ -0.0613∗∗∗
(0.0096) (0.0078) (0.0074) (0.0081)

Islamist (β2) 0.1136∗∗∗ 0.1178∗∗∗ 0.1104∗∗∗ 0.1060∗∗∗
(0.0061) (0.0048) (0.0053) (0.0049)

(Log) Number of followers (β3) 0.0057∗∗∗ 0.0034∗∗ 0.0089∗∗∗ 0.0087∗∗∗
(0.0020) (0.0015) (0.0016) (0.0015)

Random effect (τ) 0.0054∗∗∗ – – –(0.0003)
Rioting cost (κ) -0.2965∗∗∗ -0.3054∗∗∗ -0.2805∗∗∗ -0.3348∗∗∗

(0.0110) (0.0089) (0.0091) (0.0092)
Linking cost

Constant (ϕ0) 14.7964∗∗∗ 12.5633∗∗∗ 12.5194∗∗∗ 12.5921∗∗∗
(0.0229) (0.0093) (0.0096) (0.0103)

Same gender (ϕ1) -0.1708∗∗∗ -0.1930∗∗∗ -0.2012∗∗∗ -0.1934∗∗∗
(0.0146) (0.0094) (0.0092) (0.0094)

Same religiousness (ϕ2) -0.0784∗∗∗ -0.0048 -0.0065 -0.0024
(0.0095) (0.0062) (0.0063) (0.0066)

Diff. in followers (ϕ3) 0.0876∗∗∗ 0.0992∗∗∗ 0.1003∗∗∗ 0.0984∗∗∗
(0.0031) (0.0025) (0.0026) (0.0028)

Variance of random effect (σ2
z) 2.2477∗∗∗ – – –(0.0211)

Sample size (# of nodes) 225,578

Notes: The parameter estimates reported in this table are the posterior mean and the posterior
standard deviation from the Bayesian MCMC sampling procedure. The asterisks ***(**,*) indicate
that the 99% (95%, 90%) highest posterior density interval (HDI) of the corresponding draws does
not cover zero.
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Figure 7: The left panel shows the change in the fraction of rioting agents, ς+ = |{i ∈ N : si = +1}|/n, over
percentage changes in the linking cost parameter ϕ0. The corresponding change in the average degree, d̄, is shown
in the top-right inset. The right panel shows the change in the fraction of rioting agents, ς+, over the strength of
propaganda, Ψ, with the corresponding change in the average degree, d̄, shown in the top-right inset. In all figures
we plot the mean and 95% confidence interval over 300 simulation runs.

et al., 2015). We can operationalize such attempts at hampering communication as an increase in
the linking cost and explore its effect on rioting behavior, according to our estimated model.

For our counterfactual exercise, we change the value of the estimate of cost parameter ϕ0,
which is the constant term in the linking cost in (23), over the range of [-20%, 20%] with 11 evenly
distributed grid points. For each grid point, we simulate the network and action profiles 300 times
and compute the average fraction of rioting agents together with the average network degree in the
new equilibrium. The inset in the left panel in Figure 7 shows the average degree, d̄, over varying
ϕ0. As expected, we can see that the linking cost ϕ0 has a substantial effect on the average degree
so lowering the linking cost gives rise to a much denser network structure. The left panel in Figure 7
shows the fraction of rioting agents, ς+ = |{i ∈ N : si = +1}|/n, over varying ϕ0. We observe that
a reduction of ϕ0 by 20% yields an increase in the fraction of rioting agents by 15%. Conversely, this
indicates that as linking and exchanging information via the network becomes more costly (e.g.,
by interrupting or blocking social media), fewer links are being formed, coordination among agents
becomes more difficult, and fewer agents participate in the protest as a consequence. This finding
illustrates and quantifies the importance of the role of online social networks in the formation of
protest movements or riots and the emergence of collective action.

6.2. Belief Manipulation and Rioting Behavior
In our second counterfactual analysis, we examine the effectiveness of manipulating the beliefs

of the agents to mitigate rioting behavior. Governments often use manipulation of the information
available on social or other media to distort the users’ view (cf. Edmond, 2013; Zhuravskaya et al.,
2020). For example, King et al. (2017) document the massive effort of the Chinese government to
post content on social media that is mainly devoted to supporting positive views about the state.
Similar efforts have been documented in Egypt (El-Khalili, 2013).

We introduce a government influencing the belief updating in (6) as follows:

pu+1
it = (1−Ψ)

φ 1

dit

n∑
j=1

aij,tsjt + (1− φ)
1

dit + 1

puit + n∑
j=1

aij,tp
u
jt

+Ψg, (34)
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where Ψ ∈ [0, 1] and g = −1 is supposed to be the preferred action of the government (no rioting).
As in the previous section, for each of the points in an evenly distributed grid for Ψ in the range
of [0,1], we simulate repeatedly the evolutionary process and then compute the average fraction of
rioting agents, ς+ = |{i ∈ N : si = +1}|/n, and the average network degree, d̄, resulting from the
induced invariant distributions. The corresponding changes in those magnitudes for varying levels
of the influence of propaganda, Ψ, are plotted in the right panel in Figure 7. Our results show
that while propaganda (belief manipulation) does not affect the network density – which remains
roughly stable – it has a significant effect on rioting, reducing the fraction of rioting agents by
up to 30%. It does not succeed, however, in reducing rioting below 40% of the population, even
when propaganda is the only source of belief updating (i.e., when Ψ = 1). In line with the recent
literature on the phenomenon (cf. Azzimonti and Fernandes, 2022; Gu et al., 2017), these findings
illustrate the effect that the manipulation of information may have on the formation of collective
action, but also point to its limitations.

7. Conclusion
In this paper we have developed a dynamic model of collective action in a large population

where agents interact and learn through a co-evolving social network. The model describes a large
population of agents on an evolving network. Agents choose between the status quo or joining a
collective action – such as a protest – based on their idiosyncratic preferences, the observation of
actions chosen by their network neighbors, and their beliefs over the average decision chosen by the
population as a whole. We provide a complete characterization of the equilibrium action choices,
beliefs, and networks, and identify the conditions under which a significant degree of collective
action arises in the long-run equilibrium. We also show such conditions are substantially affected
by the assumptions made on the information the agents have about the state of the system. In
particular, we consider two cases: one where agents have perfect information on the average action
of all others; and an alternative, more realistic situation, where agents form beliefs over the average
action via local information, whereby they combine information on the action choices and beliefs
of their neighbors in the network. Intriguingly, our findings reveal that the conditions required for
substantial collective action are stronger and less plausible when we assume perfect information.

We then structurally estimate the model’s parameters using a large-scale Twitter dataset. The
dataset contains information about the network connections and the text of posts written by Egyp-
tian Twitter users during a period of social unrest in the Arab Spring. Our empirical results show
that: (i) both local peer effects and the global preference towards conformity have significant ef-
fects on agents’ decisions; (ii) ignoring endogeneity in the network formation process driven by
unobserved individual heterogeneity causes substantial bias in the estimates of these two effects;
and (iii) local information and learning via neighbors in the network play a significant role in belief
formation.

Finally, we use counterfactual simulations that utilize the structural estimates to quantify the
role of linking costs between agents and the role of biased beliefs on the extent of rioting. First,
we consider an increase in the fixed cost of forming links. This can originate from real world
interventions such as a government interrupting and/or blocking social media. Our results show
that a 20% increase in the cost of forming links decreases the fraction of rioting agents by 15%. The
mechanism at work here is that as linking costs rise, agents form fewer links which, in turn, makes
coordination among agents more difficult. Second, we consider attempts to manipulate the beliefs
of the agents. We find that this can have a significant effect on rioting, with a reduction in rioting
behavior of up to 40%. However, the effort to manipulate beliefs falls short of completely eliminating
rioting, indicating that government attempts to use information manipulation to suppress protests
against their rule may only have limited impact.
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Appendix
A. Proofs
Proof of Proposition 1. First note that, for any vector of beliefs ψGI ∈ [−1, 1]n, any state
ω = (s, G), any pair of agents i, j ∈ N , and action choice s′i ∈ Si by agent i, the following equalities
hold: Φ(s′i, s−i, G,ψ

GI(s′i, s−i, G))−Φ(s, G,ψGI(s, G)) = γi(s
′
i− si)+ θ(s′i− si)

∑n
j=1 aijsj +ρ(s

′
i−

si)
∑n

j ̸=i pi − κ(s′i − si) = πi(s
′
i, s−i, G;ψ

GI
i (s, G))− πi(s, G;ψ

GI
i (s, G)) and Φ(s, G± ij,ψGI(s, G±

ij))−Φ(s, G,ψGI(s, G)) = ±(θsisj−ζij) = πi(s, G±ij;ψGIi (s, G))−πi(s, G;ψGIi (s, G)) = πj(s, G±
ij;ψGIj (s, G))− πj(s, G;ψ

GI
j (s, G)), which confirms (14), as desired.

Proof of Proposition 2. Define the triple (Ω,F ,P) to be the probability space over sample paths
representing our process (where Ω is the state space and F the suitable smallest σ-algebra). Since,
in our case, the process is Markov, we start by introducing the one-step transition matrix P(t) :
Ω2 → [0, 1] specifying the probability of a transition from a state ω ∈ Ω prevailing at t to a
state ω′ ∈ Ω after some small time interval of length ∆t. If ω′ ̸= ω, this probability is given by
P(ωt+∆t = ω′|ωt = ω) = q(ω,ω′)∆t + o(∆t), where q(ω,ω′) is the transition rate from state ω
to state ω′. In our case, since the Markov process is time-homogeneous, the transition-rate matrix
(or infinitesimal generator) Q = (q(ω,ω′))ω,ω′∈Ω is independent of time. Given the postulated

37



adjustment rules, it has the following form:

q(ω,ω′) =



χ eηΦ(si,s−i,G)

eηΦ(si,s−i,G)+eηΦ(s′
i
,s−i,G)

if ω′ = (s′i, s−i, G) and ω = (s, G),

λ eηΦ(s,G+ij)

eηΦ(s,G+ij)+eηΦ(s,G) if ω′ = (s, G+ ij) and ω = (s, G),

λ eηΦ(s,G−ij)

eηΦ(s,G−ij)+eηΦ(s,G) if ω′ = (s, G− ij) and ω = (s, G),

−
∑

ω′ ̸=ω q(ω,ω
′) if ω′ = ω,

0 otherwise.

(A.1)

where with have denoted by Φ(ω) for Φ(ω,ψGI(ω)) to simplify the notation. The matrix Q
satisfies the Chapman-Kolmogorov forward equation d

dtP(t) = P(t)Q and therefore we can write
P(t) = I + Q∆t + o(∆t). Furthermore, the stationary distribution µGIη : Ω → [0, 1] is then the
solution to µηP = µη and can be equivalently computed as µηQ = 0 (cf. Norris, 1998).

Note that the embedded discrete-time Markov chain is irreducible and aperiodic, and thus is
ergodic and has a unique stationary distribution. Hence, also the continuous-time Markov chain
is ergodic and has a unique stationary distribution. The stationary distribution solves µηQ = 0
with the transition rates matrix Q = (q(ω,ω′))ω,ω′∈Ω of (A.1). This equation is satisfied when the
probability distribution µGIη (ω) satisfies the detailed balance condition (cf. Norris, 1998)

µGIη (ω)q(ω,ω′) = µGIη (ω′)q(ω′,ω), (A.2)

for all ω,ω′ ∈ Ω. Observe that the detailed balance condition is trivially satisfied if ω′ and ω
differ in more than one link or more than one action level. Hence, we consider only the case of link
creation G′ = G+ ij (and removal G′ = G− ij) or an adjustment in action s′i ̸= si for some i ∈ N .
For the case of link creation with a transition from ω = (s, G) to ω′ = (s, G+ ij) we can write the
detailed balance condition as follows

1

η eηΦ(s,G) eηΦ(s,G+ij)

eηΦ(s,G+ij) + eηΦ(s,G)
λ =

1

η eηΦ(s,G+ij) eηΦ(s,G)

eηΦ(s,G) + eηΦ(s,G+ij)
λ.

This equality is trivially satisfied. A similar argument holds for the removal of a link with a
transition from ω = (s, G) to ω′ = (s, G− ij) where the detailed balance condition reads

1

η eηΦ(s,G) eηΦ(s,G−ij)

eηΦ(s,G−ij) + eηΦ(s,G)
λ =

1

η eηΦ(s,G−ij) eηΦ(s,G)

eηΦ(s,G) + eηΦ(s,G−ij)λ.

For a change in the agents’ actions with a transition from ω = (si, s−i, G) to ω′ = (s′i, s−i, G) we
get the following detailed balance condition

1

η eηΦ(si,s−i,G) eηΦ(s′i,s−i,G)

eηΦ(si,s−i,G) + eηΦ(s′i,s−i,G)
χ =

1

η eηΦ(s′i,s−i,G) eηΦ(si,s−i,G)

eηΦ(si,s−i,G) + eηΦ(s′i,s−i,G)
χ.

Hence, the probability measure µGIη (ω) satisfies a detailed balance condition of (A.2) and therefore
is the stationary distribution of the Markov chain with transition rates q(ω,ω′).

Proof of Proposition 3. The potential function can be written as

Φ(s, G) =
n∑
i=1

γi + ρ

2

n∑
j ̸=i

sj − κ

 si +
1

2

n∑
i=1

n∑
j=1

aij

(
θsisj − ζ1 +

ζ1 − ζ2
2

(1− γiγj)

)
. (A.3)
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Note that only the last summatory in (A.3) depends on the network G, through the entries of
the elements aij of its adjacency matrix A = [aij ]. In particular, the term

∑n
i=1

∑n
j=1 aijsisj is

maximized over si, sj ∈ {−1,+1} for aij = 1 iff si = sj . The term
∑n

i=1

∑n
j=1 aij(θsisj − ζ1+(ζ1−

ζ2)(1 − γiγj)/2 is maximized over si, sj ∈ {−1,+1} for aij = 1 iff si = sj = γi = γj if ζ1 < θ < ζ2
and si = sj if ζ2 < θ. If θ < ζ1 then aij = 0 and we obtain the empty network, Kn.

To summarize, the candidate networks and action profiles that maximize the potential must be
either complete, Kn, empty, Kn, or composed of two disconnected cliques, Kn1 ∪Kn−n1 , in which
all agents in the same clique chose the same action and have the same idiosyncratic preferences.

In the following we denote by n+ = #({γi = 1 : i = 1, . . . , n}), ν+ = n+/n and define

θ∗ = ζ2 +
2(1− κ)

n− n+
− 2ρ,

θ∗∗ = ζ2 +
2(1 + κ)

n+
− 2ρ,

κ∗ = 2ν+ − 1,

ρ∗ =
1− κ

n− n+
,

ρ∗∗ =
1 + κ

n+
.

Further, w.l.o.g. κ is assumed to be non-negative. Note also that κ∗ ≤ 1 and κ∗ ≤ 0 if ν+ ≤ 1/2.

We first consider the case of θ < ζ1. In this case the potential maximizing network will be the
empty network Kn. When all agents choose the action si = −1 the potential is given by

Φ((−1, . . . ,−1),Kn) = n− 2n+ +
ρn(n− 1)

2
+ κn.

When all agents choose the action si = +1 the potential is given by

Φ((+1, . . . ,+1),Kn) = n+ − (n− n+) +
ρn(n− 1)

2
− κn.

When all agents choose the action si = γi the potential is given by

Φ(γ,Kn) = n+
ρ

2

(
(n− 2n+)

2 − n
)
− κ(2n+ − n).

The difference in the potential between si = −1 and si = γi is given by

Φ((−1, . . . ,−1),Kn)− Φ(γ,Kn) = 2n+(κ+ ρ(n− n+)− 1).

Setting this to zero gives us the threshold

ρ∗ =
1− κ

n− n+
.

The difference in the potential between si = +1 and si = γi is given by

Φ((+1, . . . ,+1),Kn)− Φ(γ,Kn) = −2(n− n+)(κ+ 1− n+ρ).
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Setting this to zero gives us the threshold

ρ∗∗ =
1 + κ

n+
.

Moreover, the difference in the potential between si = +1 and si = −1 is given by

Φ̃((+1, . . . ,+1),Kn)− Φ̃((−1, . . . ,−1),Kn) = −2((κ+ 1)n− 2n+),

which is positive if
κ < κ∗ = 2ν∗ − 1 ≤ 1.

Thus if θ < ζ1, the potential maximizing state is given by the empty network Kn where

1. If ν+ < 1/2

(a) and ρ > ρ∗, then all agents choose the action si = −1.
(b) and ρ < ρ∗, then all agents choose the action si = γi.

2. If ν+ > 1/2,

(a) κ > κ∗

i. and ρ > ρ∗, then all agents choose the action si = −1.
ii. and ρ < ρ∗, then all agents choose the action si = γi.

(b) κ < κ∗

i. and ρ > ρ∗∗, then all agents choose the action si = +1.
ii. and ρ < ρ∗∗, then all agents choose the action si = γi.

Note that for n→ ∞ we get that

ρ∗ =
1− κ

n− n+
→ 0,

ρ∗∗ =
1 + κ

n+
→ 0.

Hence, when n→ ∞ then if θ < ζ1, the potential maximizing state is given by the empty network
Kn:

1. If ν+ < 1/2 then all agents choose the action si = −1.

2. If ν+ > 1/2 and

(a) κ > κ∗ then all agents choose the action si = −1.
(b) κ < κ∗ then all agents choose the action si = +1.

Next we consider the case of θ > ζ1. The potential maximizing network is either complete, Kn,
or composed of two cliques, Kn+ ∪ Kn−n+ . In the following we consider separately the cases of
ν+ < 1/2 and ν+ > 1/2.
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Case 1: ν+ < 1/2. The potential for the complete Graph Kn with all agents choosing action
si = −1 is given by

Φ((−1, . . . ,−1),Kn) = (n− 2n+) +
1

2
[n(n− 1)− 2n+(n− n+)](θ − ζ1)

+ n+(n− n+)(θ − ζ2) +
ρn(n− 1)

2
+ κn.

The potential for the union of cliques Kn+ ∪Kn−n+ with all agents choosing action si = γi is given
by

Φ(γ,Kn+ ∪Kn−n+) = n+
1

2
[n(n− 1)− 2n+(n− n+)](θ − ζ1) +

ρ

2
[(n− 2n+)

2 − n]− κ(2n+ − n).

The potential difference between the complete network Kn in which all agents choose action si =
−1) and the union of cliques Kn+∪Kn−n+ in which the agents choose their idiosyncratic preferences
si = γi) is given by

Φ((−1, . . . ,−1),Kn)− Φ(γ,Kn+ ∪Kn−n+) = n+[2(κ− 1)− (n− n+)(ζ2 − θ − 2ρ)].

Setting this to zero we find the threshold:

θ∗ = ζ2 +
2(1− κ)

n− n+
− 2ρ = ζ2 + 2(ρ∗ − ρ).

Moreover

Φ((−1, . . . ,−1),Kn)− Φ((−1, . . . ,−1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is positive if
θ > ζ2.

Further

Φ((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ(γ,Kn+ ∪Kn−n+) = 2n+(ρ(n− n+)− (1− κ)).

which is positive for
ρ > ρ∗ =

1− κ

n− n+
.

We can then conclude that:

1. If θ > θ∗ and

(a) θ > ζ2 then the potential function of the complete graph Kn with si = −1 is higher
than that of the union of cliques Kn+ ∪Kn−n+ with si = −1 or si = γi. Therefore, the
stochastically stable state is the complete graph Kn with si = −1.

(b) θ < ζ2 then the potential function of the union of cliques Kn+ ∪Kn−n+ with si = −1 is
higher than that of the complete graph Kn with si = −1. Therefore, the stochastically
stable state is the union of cliques Kn+ ∪Kn−n+ with si = −1.

2. If θ < θ∗ and

(a) ρ < ρ∗ then the potential function of the union of cliques Kn+ ∪ Kn−n+ with si = γi
is higher than that of the complete graph Kn with si = −1 or the union of cliques
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Kn+ ∪ Kn−n+ with si = −1. Therefore, the stochastically stable state is the union of
cliques Kn+ ∪Kn−n+ with si = γi.

(b) ρ > ρ∗ then the potential function of the union of cliques Kn+ ∪Kn−n+ with si = −1
is higher than that of the complete graph Kn with si = −1 or the union of cliques
Kn+ ∪ Kn−n+ with si = γi. Therefore, the stochastically stable state is the union of
cliques Kn+ ∪Kn−n+ with si = −1.

Case 2: ν+ > 1/2. We first note that Φ((−1, . . . ,−1),Kn) −Φ((+1, . . . ,+1),Kn) = 2(n(κ +
1) − 2n+), which is increasing in κ. For ν+ < 1/2 this equation is strictly positive for any value
of κ ≥ 0. In contrast, for ν+ > 1/2 we have that Φ((−1, . . . ,−1),Kn) < Φ((+1, . . . ,+1),Kn) if
κ < κ∗ = 2n+

n −1, and κ∗ being positive only if n+ > n/2. Moreover, Φ((−1, . . . ,−1),Kn+∪Kn−n+)
−Φ((+1, . . . ,+1),Kn+∪Kn−n+) = 2n(κ−κ∗), which is positive for κ > κ∗ and negative for κ < κ∗.
We thus need to distinguish further the cases κ > κ∗ and κ < κ∗.

1. Subcase 2.1: κ > κ∗. The potential for the complete graph Kn in which all agents choose
action si = −1 is given by

Φ((−1, . . . ,−1),Kn) = (n− 2n+) +
1

2
[n(n− 1)− 2n+(n− n+)](θ − ζ1)

+ n+(n− n+)(θ − ζ2) +
ρn(n− 1)

2
+ κn.

The potential for the union of cliques Kn+ ∪Kn−n+ in which all agents choose action si = γi
is given by

Φ(γ,Kn+ ∪Kn−n+) = n+
1

2
[n(n−1)−2n+(n−n+)](θ−ζ1)+

ρ

2
[(n−2n+)

2−n]−κ(2n+−n).

The difference between the potentials for the complete graph Kn (all si = −1) and the union
of cliques Kn+ ∪Kn−n+ (si = γi) is given by

Φ((−1, . . . ,−1),Kn)− Φ(γ,Kn+ ∪Kn−n+) = n+[2(κ− 1)− (n− n+)(ζ2 − θ − 2ρ)].

Setting this to zero we find the threshold

θ∗ = ζ2 +
2(1− κ)

n− n+
− 2ρ = ζ2 + 2(ρ∗ − ρ).

Moreover,

Φ((−1, . . . ,−1),Kn)− Φ((−1, . . . ,−1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is zero if θ = ζ2. Further,

Φ((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ(γ,Kn+ ∪Kn−n+) = 2n+(ρ(n− n+)− (1− κ)),

which is positive for
ρ > ρ∗ =

1− κ

n− n+
.

We then can conclude the following:

(a) If θ > θ∗ and
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i. θ > ζ2 then the potential function of the complete graph Kn with si = −1 is higher
than that of the union of cliques Kn+ ∪Kn−n+ with si = −1 or si = γi. Therefore,
the stochastically stable state is the complete graph Kn with si = −1.

ii. θ < ζ2 then the potential function of the union of cliques Kn+ ∪Kn−n+ with si = −1
is higher than that of the complete graph Kn with si = −1 or the union of cliques
Kn+ ∪Kn−n+ with si = γi. Therefore, the stochastically stable state is the union of
cliques Kn+ ∪Kn−n+ with si = −1.

(b) If θ < θ∗ and
i. ρ < ρ∗ then the potential function of the union of cliques Kn+ ∪Kn−n+ with si = γi

is higher than that of the complete graph Kn with si = −1 or the union of cliques
Kn+ ∪Kn−n+ with si = −1. Therefore, the stochastically stable state is the union
of cliques Kn+ ∪Kn−n+ with si = γi.

ii. ρ > ρ∗ then the potential function of the union of cliques Kn+∪Kn−n+ with si = −1
is higher than that of the complete graph Kn with si = −1 or the union of cliques
Kn+ ∪Kn−n+ with si = γi. Therefore, the stochastically stable state is the union of
cliques Kn+ ∪Kn−n+ with si = −1.

2. Subcase 2.2: κ < κ∗. The potential for the complete graph Kn with all agents choosing
action si = +1 is given by

Φ((+1, . . . ,+1),Kn) = (2n+ − n) +
1

2
[n(n− 1)− 2n+(n− n+)](θ − ζ1)

+ n+(n− n+)(θ − ζ2) +
ρn(n− 1)

2
− κn.

The potential in the union of cliques Kn+ ∪Kn−n+ with all agents choosing action si = γi is
given by

Φ(γ,Kn+ ∪Kn−n+) = n+
1

2
[n(n−1)−2n+(n−n+)](θ−ζ1)+

ρ

2
[(n−2n+)

2−n]−κ(2n+−n).

The difference between the potentials of the complete graph Kn (all si = +1) and the union
of cliques Kn+ ∪Kn−n+ (all si = γi) is then

Φ((+1, . . . ,+1),Kn)− Φ(γ,Kn+ ∪Kn−n+) = −(n− n+)[2(κ+ 1) + n+(ζ2 − θ − 2ρ)].

Setting this to zero we obtain the threshold

θ∗∗ = ζ2 +
2(1 + κ)

n+
− 2ρ = ζ2 + 2(ρ∗∗ − ρ).

Moreover,

Φ((+1, . . . ,+1),Kn)− Φ((+1, . . . ,+1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is zero if θ = ζ2. Further,

Φ((+1, . . . ,+1),Kn+ ∪Kn−n+)− Φ(γ,Kn+ ∪Kn−n+) = −2(n− n+)((κ+ 1)− n+ρ),

which is negative for
ρ < ρ∗∗ =

1 + κ

n+
.

We then can summarize the above cases as follows:
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(a) If θ > θ∗∗ and
i. θ > ζ2 then the potential function of the complete graph Kn with si = +1 is higher

than that of the union of cliques Kn+ ∪Kn−n+ with si = γi or si = +1. Therefore,
the stochastically stable state is the complete graph Kn with si = +1.

ii. θ < ζ2 then the potential function of the union of cliques Kn+ ∪Kn−n+ with si = +1
is higher than that of the complete graph Kn with si = +1 or the union of cliques
Kn+ ∪Kn−n+ with si = γi. Therefore, the stochastically stable state is the union of
cliques Kn+ ∪Kn−n+ with si = +1.

(b) If θ < θ∗∗ and
i. ρ < ρ∗∗ then the potential function of the union of cliques Kn+∪Kn−n+ with si = γi

is higher than that of the complete graph Kn with si = +1 or the union of cliques
Kn+ ∪Kn−n+ with si = +1. Therefore, the stochastically stable state is the union
of cliques Kn+ ∪Kn−n+ with si = γi.

ii. ρ > ρ∗∗ then the potential function of the union of cliques Kn+∪Kn−n+ with si = +1
is higher than that of the complete graph Kn with si = +1 or the union of cliques
Kn+ ∪Kn−n+ with si = γi. Therefore, the potential maximizing state is the union
of cliques Kn+ ∪Kn−n+ with si = +1.

Thus, if θ > ζ1, the stochastically stable state is either complete Kn or composed of two cliques
Kn+ ∪Kn−n+ . More precisely:

1. If ν+ < 1/2,

(a) θ > θ∗ and
i. θ > ζ2, then the stochastically stable state is the complete graph Kn with si = −1.
ii. θ < ζ2, then the stochastically stable state is the union of cliques Kn+ ∪Kn−n+ with

si = −1.
(b) θ < θ∗ and

i. ρ < ρ∗ then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = γi.
ii. ρ > ρ∗ then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = −1.

2. If ν+ > 1/2,

(a) κ > κ∗,
i. θ > θ∗ and

• θ > ζ2, then the stochastically stable state is the complete graph Kn with
si = −1.

• θ < ζ2, then the stochastically stable state is the union of cliques Kn+ ∪Kn−n+

with si = −1.
ii. θ < θ∗ and

• ρ < ρ∗ then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = γi.

• ρ > ρ∗ then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

(b) κ < κ∗,
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i. θ > θ∗∗ and
• θ > ζ2, then the stochastically stable state is the complete graph Kn with
si = +1.

• θ < ζ2, then the stochastically stable state is the union of cliques Kn+ ∪Kn−n+

with si = +1.
ii. θ < θ∗∗ and

• ρ < ρ∗∗ then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = γi

• ρ > ρ∗∗ then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = +1.

This proves Proposition E.1. Further, note that for n→ ∞ we get that

ρ∗ =
1− κ

n− n+
−−−→
n→∞

0,

ρ∗∗ =
1 + κ

n+
−−−→
n→∞

0,

lim
n→∞

θ∗ = lim
n→∞

θ∗∗ = ζ2 − 2ρ.

Hence, when n → ∞ then if θ > ζ1, the stochastically stable state maximizing the potential is
either complete Kn or composed of two cliques Kn+ ∪Kn−n+ where:

1. If ν+ < 1/2,

(a) θ > ζ2 − 2ρ and
i. θ > ζ2, then the stochastically stable state is the complete graph Kn with si = −1.
ii. θ < ζ2 then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = −1.
(b) If θ < ζ2−2ρ, then the stochastically stable state is the union of two cliques Kn+∪Kn−n+

with si = −1.

2. If ν+ > 1/2,

(a) κ > κ∗,
i. θ > ζ2 − 2ρ and

• θ > ζ2, then the stochastically stable state is the complete graph Kn with
si = −1.

• θ < ζ2, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

ii. θ < ζ2 − 2ρ, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

(b) If κ < κ∗,
i. θ > ζ2 − 2ρ and

• θ > ζ2, then the stochastically stable state is the complete graph Kn with
si = +1.

• θ < ζ2, then the stochastically stable state is the union of cliques Kn+ ∪Kn−n+

with si = +1.
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ii. θ < ζ2 − 2ρ, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = +1.

A concise summary of the above cases in the large population limit (n→ ∞) is stated in Proposition
3. This concludes the proof.

Proof of Proposition 4. As a preliminary step in our analysis of the LIL scenario, we prove
the following lemma. Its purpose is to provide a useful closed-form expression that specifies how,
depending on the prevailing state of the system, the beliefs are formed in a large population when
belief updating is mainly driven by social learning.

Lemma 1. Let ω = (s, G) ∈ Ω̂n(⊂ Ωn). Then, limφ→0+ ψ
LIL
i (ω) = p∗ where p∗ = (p∗, p∗, . . . , p∗) ∈

[0, 1]n with p∗ ∝
∑n

i=1
1+di
di

∑n
j=1 aijsj.

Proof. As explained in Subsection 2.3 (cf. Equation (8)), the limit beliefs of the learning process
taking place at any state ω = (s, G) are characterized by the following stationarity condition:
p∗ = φD−1As + (1 − φ)D̂−1Âp∗, where D ≡ diag(d1, . . . , dn) is the diagonal matrix of agents’
degrees, D̂ ≡ In+D with In being the identity matrix, A is the adjacency matrix of the prevailing
network, and Â ≡ In +A.

Since the largest eigenvalue of the row-stochastic matrix D̂−1Â is one and (1− φ) ∈ (0, 1), the
matrix In − (1− φ)D̂−1Â is invertible and therefore we can write:

p∗ = φ
[
In − (1− φ)D̂−1Â

]−1
D−1As. (A.4)

Consider now any ω = (s, G) ∈ Ω̂n. By Property P2, its corresponding network G is path-
connected. Thus, the matrix denoted by Ŵ ≡ D̂−1Â is row-stochastic matrix (each of its rows
summing to one) and has a unique largest eigenvalue λ1 = 1 with corresponding right eigenvector
u = (1, . . . , 1)⊤ and left eigenvector π (thus satisfying the equation πŴ = π) given by:

π =
1

2m+ n
(d1 + 1, . . . , dn + 1), (A.5)

where m is the number of links in the network. Next, we introduce the similarity transform
S = D̂1/2ŴD̂−1/2 and, conversely, Ŵ = D̂−1/2SD̂1/2. The matrix S is a symmetric matrix with
the same eigenvalues λi as Ŵ, 1 = λ1 > λ2 ≥ . . . ≥ λn ≥ −1. Therefore, by the Perron-Frobenius
theorem, the following spectral representation holds (Seneta, 2006): S =

∑n
i=1 λiviv

⊤
i , where vi is

the eigenvector to the i-th eigenvalue λi of the real and symmetric matrix S, i.e. Svi = λivi for
each i = 1, 2, ..., n. Next, given any α < 1, we can apply the following Neumann series expansion
(Meyer, 2000) to write: (In − αŴ)−1 =

∑∞
k=1 α

kŴk. And from the spectral representation S =∑n
i=1 λiviv

⊤
i , combined with the fact that the eigenvectors form an orthonormal basis in Rn (i.e.

v⊤
i vi = 1 while v⊤

i vj = 0 for j ̸= i) we have: Ŵk = (D̂−1/2SD̂1/2)k = (D̂−1/2
∑n

i=1 λiviv
⊤
i D̂

1/2)k

= (D̂−1/2
∑n

i=1 λiviv
⊤
i D̂

1/2) · · · (D̂−1/2
∑n

i=1 λiviv
⊤
i D̂

1/2) = D̂−1/2
∑n

i=1 λ
k
i viv

⊤
i D̂

1/2. Hence the
Neumann series expansion from above can be developed as follows: (In −αŴ)−1 =

∑n
i=1 D̂

−1/2vi
v⊤
i D̂

1/2
∑∞

k=1 α
kλki =

∑n
i=1

1
1−αλi D̂

−1/2vi v
⊤
i D̂

1/2 = 1
1−αλ1 D̂−1/2v1 v⊤

1 D̂1/2 +
∑n

i=2
1

1−αλi D̂
−1/2

vi v
⊤
i D̂

1/2 = 1
1−α D̂−1/2v1 v⊤

1 D̂1/2 +
∑n

i=2
1

1−αλi D̂−1/2 viv
⊤
i D̂

1/2. Thus noting that |λi| < 1 for
all i = 2, . . . , n, when α converges to 1 from below we can write: limα→1−(1 − α)(In − αŴ)−1

= D̂−1/2v1v
⊤
1 D̂

1/2 = u(v⊤
1 )

2 = 1
2m+n(1, . . . , 1)

⊤ × (d1 +1, . . . , dn+1) where we have used the fact
that the similarity transform maps the left-eigenvector π into v1 = D̂−1/2π with v1i =

√
di+1
2m+n (cf.

Van Mieghem, 2011, Sec. 3.7).
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Finally, applying the above derivations to Equation (A.4) when φ→ 0+ we obtain, as claimed,
that p∗ ∼ φ 1

1−(1−φ)u(v
⊤
1 )

2Ws = 1
2m+n(

∑n
i=1

1+di
di

∑n
j=1 aijsj , . . . ,

∑n
i=1

1+di
di

∑n
j=1 aijsj)

⊤

When the population is large, we can establish the following corollary that refines in a useful
way the conclusion obtained from Lemma 1. To state formally the result, we rely on the following
notation. Given any ω ∈ Ω, denote by ζ+d (ω) and ζ−d (ω) the fraction of individuals with degree d
that choose, respectively, actions +1 and −1 in state ω. Note that, obviously, the overall degree
distribution {ζd(ω)}d∈N at ω satisfies ζd(ω) = ζ+d (ω)+ζ

−
d (ω) and therefore

∑
d∈N[ζ

+
d (ω)+ζ

−
d (ω)] =

1.

Corollary 1. For any η > 0 there exists some n̂ ∈ N and φ̂ > 0 such that if n ≥ n̂, φ ≤ φ̂, then
for all ω ∈ Ω̂n and all i ∈ N , we have

∣∣ψLILi (ω)−
[∑

d∈N
(
ζ+d (ω)− ζ−d (ω)

)
d
] ∣∣ ≤ η.

Proof. For states ω ∈ Ω̂n we know from Property P1 that, as the population size n grows, the
degree di of each agent i can be made arbitrarily large as the population size increases. Thus, if n
is sufficiently large, we can rely on Lemma 1 to arrive at the following further approximation for
small φ:

p∗ = ψLIL(ω) ≈ 1

2m


∑n

i=1

∑n
j=1 aijsj
...∑n

i=1

∑n
j=1 aijsj

 =
1

2m


∑n

j=1 djsj
...∑n

j=1 djsj

 =
∑
d∈N

(
ζ+d (ω)− ζ−d (ω)

)
d

1...
1

 .
(A.6)

which implies the desired conclusion.

Next, we build on the preceding results to establish a series of additional lemmas that, un-
der assumptions A.1 and A.2, eventually allow us to characterize the long run behavior of the
adjustment process with an arbitrarily high probability. To this end, it will be useful to cen-
ter our attention on the complement of the sets we have denoted by Hδ

n. That is, on the sets
H̄δ
n ≡ {ω = (s, G)) ∈ Ωn : | 1n

∑n
i=1 si| > δ} that include the states that display an average action

differing from zero by more than δ. In fact, the focus of our analysis will be narrower than that: it
will consider the sets Ω̂δn ≡ Ω̂n∩H̄δ

n consisting of the states that not only satisfy the aforementioned
property but also the properties we have labeled as P1-P3.

For any such state ω ∈ Ω̂δn, the objective is to show that every transition to an adjacent ω′

leads to changes in the function Φ̃(·) given by (cf. (18)):

Φ̃(ω′)− Φ̃(ω) = πi(ω
′, ψLILi (ω))− πi(ω, ψ

LIL
i (ω)) + ρ(n− 1)

n∑
j=1

s′j(ψ
LIL
j (ω′)− ψLILj (ω)) (A.7)

that display the a sign (ordinal) alignment with the change in the payoffs of the agent(s) implement-
ing the transition. As informally discussed in Section 3.2, the focus will be on relating/comparing
the change in payoffs of those agents as given by the first two terms (payoff difference) in the RHS
of (A.7) with the third term of it, which can be conceived as a remainder embodying the effect that
the change has on the rest of the population. The approach will be different in the case of action
adjustment (which is unilateral) and the case where the adjustment involves a link (and is therefore
bilateral). In the first case, what we shall show is that the conditions that determine the sign of
both terms depends in the same way on the same condition – hence the desired alignment readily
follows. Instead, in the second case, the argument will hinge upon showing that, even when these
terms are of opposite sign, the payoff changes of the agents involved in the link revision always
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dominate in magnitude to the effect induced on others. This, of course, also leads to the desired
alignment.

Starting by the analysis of transitions induced by action revision, the next result characterizes
the sign of the payoff change expected by the revising agent when the current state is in Ω̂δn, the
population is large, and belief updating is mostly driven by social learning.

Lemma 2. Given any δ > 0, there exist some n̂ ∈ N and φ̂ > 0 such that, if n ≥ n̂ and φ ≤ φ̂, any
adjustment taking place at a state ω = (s, G) in Ω̂δn toward an adjacent state ω′ = (s′, G′) ∈ Ai(ω)
for some i ∈ N and G′ = G satisfies:28

πi(ω
′, ψ(ω))− πi(ω, ψ(ω)) > 0 ⇔ s′i

n∑
k=1

sk > 0. (A.8)

Proof. The argument proceeds in three stages, which we number consecutively.

1. Consider any state ω ∈ Ω̂δn. Then, given δ, we can rely on Lemma 1 and Corollary 1 to assert
that, if the population size n is large and φ is small, the common beliefs ψLILi (ω) shared by all
i ∈ N at the end of the learning process taking place at ω approximate those given in (A.6). More
precisely, the claim here is that for any η > 0 there must exist n̂1 ∈ N and φ̂ > 0 such that if n ≥ n̂1
and φ ≤ φ̂, then the uniform “consensus” profile of individual beliefs ψ(ω) = (p∗(ω), . . . , p∗(ω))
satisfies

∣∣p∗(ω)− [∑d∈N
(
ζ+d (ω)− ζ−d (ω)

)
d
] ∣∣ ≤ η.

2. Let us choose η to satisfy η < δ/2. Then we argue that, under the conditions specified in
stage 1, we have that [∑

d∈N

(
ζ+d (ω)− ζ−d (ω)

)
d

]
· p∗(ω) > 0, (A.9)

i.e. both factors in the above inequality are of the same (non-zero) sign. The reason is two-fold.
First we note that, since ω ∈ Ω̂n and therefore it satisfies Property P3, the entailed action-based
homophily guarantees the required signed of the second factor of the claimed inequality. To confirm
this claim, suppose for concreteness that ω is such that

∑n
i=1 si > 0 and hence (by Property P3)

d̄+(ω) > d̄−(ω). Then, denoting by ζ+(ω) ≡
∑

d∈N ζ
+
d (ω) and ζ−(ω) ≡

∑
d∈N ζ

−
d (ω) the aggregate

frequencies of the population respectively playing actions +1 and −1, the fact that d̄+(ω) ≥ 1 and
d̄+(ω)− d̄−(ω) > 0 implies:∑

d∈N
ζ+d (ω)d− ζ−d (ω)d = ζ+(ω) · d̄+(ω) + ζ−(ω) · d̄−(ω)

= d̄+(ω)
[
ζ+(ω)− ζ−(ω)

]
+ ζ−(ω)

[
d̄+(ω)− d̄−(ω)

]
(A.10)

≥ ζ+(ω)− ζ−(ω) =
1

n

n∑
i=1

si > δ > 0.

To check now that p∗(ω), the second factor in the LHS of the inequality in (A.9), is also positive
we start by noting that, since ω is in Ω̂δn, we have that ω ∈ H̄δ

n and therefore 1
n

∑n
i=1 si > δ > 0.

Thus, since we have chosen η to satisfy η < δ/2, by virtue of (A.10) and the argument spelled out
in stage 1 we have that p∗(ω) > δ/2 and is therefore positive, as desired. The argument for the
case where 1

n

∑n
i=1 si < 0 is symmetric to the one just considered.

28 Note that, being state ω′ adjacent to ω and G′ = G, their respective action profiles must have s′j = sj for all
j ̸= i while s′i = −si.
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3. Under the conditions explained in stage 2, we know that |p∗(ω)| > δ/2, with δ being chosen
positive, independently of n. Furthermore, since ω satisfies Property P1, as the population gets
large the network degrees of the agents grow at an infinitesimally smaller rate than the population
size n. Hence, given the (positive) parameters θ and ρ, if the population is large enough the
expected payoffs of agent i must become dominated by global conformity-inducing payoffs (whose
relative weight is modulated by p∗(ω) · ρ/θ), rather than local ones. This, in sum, implies that
there exists some n̂ ≥ n̂1 (as chosen in stage 1) such that, if n ≥ n̂, the expected change in agent
i’s payoffs from switching to action s′i is positive if, and only if, s′i · p∗(ω) > 0 – or, equivalently
(in view of stage 2), if, and only if, the new action s′i is of the same sign as that of 1

n

∑n
j=1 sj , the

average population action, as claimed is the statement in the Lemma.

As advanced, the following counterpart of the preceding Lemma 2 can be established for the
remainder term in the RHS of (A.7).

Lemma 3. Given any δ > 0, there exist some n̂ ∈ N and φ̂ > 0 such that, if n ≥ n̂ and φ ≤ φ̂, any
adjustment taking place at a state ω = (s, G) in Ω̂δn toward an adjacent state ω′ = (s′, G′) ∈ Ai(ω)
for some i ∈ N and G′ = G satisfies:

n∑
j=1

s′j
[
ψLILj (ω′)− ψLILj (ω)

]
> 0 ⇔ s′i

n∑
j=1

sj > 0. (A.11)

Proof. Let ω ∈ Ω̂δn be any prevailing state and suppose that agent i switches to action s′i ̸= si.
Then, rewriting the second term in the RHS of (A.7) as follows:

∑n
j=1 s

′
j

[
ψLILj (ω′)− ψLILj (ω)

]
=

(p∗(ω′)− p∗(ω))(s′i +
∑n

j ̸=i sj), we claim that there exists some n̂ such that if n ≥ n̂,

sign

(p∗(ω′)− p∗(ω))

s′i +∑
j ̸=i

sj

 = sign

s′i
s′i +∑

j ̸=i
sj

 (A.12)

= sign

s′i n∑
j=1

sj

 (A.13)

where (A.12) follows from the fact that agent i’s action adjustment toward action s′i shifts the
modified consensus beliefs p∗(ω′) in the direction of s′i, i.e. s′i ·(p∗(ω′)−p∗(ω)) > 0, and (A.13) holds
because, provided n̂ above is chosen large enough, we must have: s′i+

∑
j ̸=i sj > 0 ⇔

∑n
j=1 sj > 0.

To see this, suppose first for concreteness that
∑n

j=1 sj > 0. Then, since ω is in Ω̂δn, it is in H̄δ
n as

well. Hence we know that 1
n

∑n
j=1 sj > δ and therefore:

s′i +
n∑
j ̸=i

sj = n

 1

n

n∑
j=1

sj

+ s′i − si ≥ nδ − 2 > 0, (A.14)

provided δ > 2/n, which obviously holds if n ≥ n̂ for a sufficiently large n̂. A symmetric argument
applies if

∑n
j=1 sj < 0, thus completing the proof of the result.

Lemmas 2 and 3 jointly yield the following straightforward corollary.

Corollary 2. Let Φ̃ : Ω → R be the function defined by (17) and consider any ω = (s, G) ∈ Ω̂δn
for some given δ. Then, there exist some n̂ ∈ N and φ̂ > 0 such that, if n ≥ n̂ and φ ≤ φ̂, any
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adjustment taking place at state ω toward an adjacent state ω′ = (s′, G′) ∈ Ai(ω) for some i ∈ N
and G′ = G satisfies:[

Φ̃(ω′)− Φ̃(ω)
] [
πi(s

′
i, s−i, G;ψ

LIL
i (ω))− πi(si, s−i, G;ψ

LIL
i (ω))

]
≥ 0. (A.15)

Proof. Consider any given transition from some ω ∈ Ω̂δn to an adjacent state ω′ ∈ Ai(ω) for some
i ∈ N . In combination, the characterizations provided by (A.8) and (A.11) imply that the induced
change on the function Φ̃(·), as specified in (A.7), has the first two (payoff difference) and the last
term in the RHS of this latter equation both being of the same sign. Since its first two terms
capture the change in the payoffs of agent i, we conclude that the payoffs of this agent and the
function Φ̃(·) experience a change of the same sign, as claimed.

The previous corollary identifies conditions under which, for an arbitrary δ and corresponding
states in Ω̂δn, the function Φ̃(·) acts as an ordinal potential when the adjustment implementing the
transition of an action revision. Next, we address a similar concern pertaining to link revision.

Lemma 4. Given any ϑ > 0, there exist some n̂ ∈ N such that, if n ≥ n̂, any adjustment taking
place at a state ω = (s, G) in Ω̂δn toward an adjacent state ω′ = (s′, G′) ∈ A(ω) with s′ = s

satisfies29 Ξ =
∣∣∣ρ(n− 1)

∑n
i=1 si(ψ(ω

′)− ψ(ω))
∣∣∣ ≤ ϑ.

Proof. From Lemma 1 we have that, for states ω and ω′ as specified there, the beliefs ψi(ω) and
ψi(ω

′) commonly held by all i ∈ N satisfy: ψi(ω′) − ψi(ω) = ± 1
2m+n

[
1+dk
dk

sℓ +
1+dℓ
dℓ

sk

]
, where

k and ℓ above are the single pair of agents whose link is changed, i.e. formed (+) or removed (−),
in switching from ω to ω′. This implies that Ξ = ρ(n−1)

2m+n

∣∣∣1+dkdk
sℓ + 1+dℓ

dℓ
sk

∣∣∣, where recall that
m = 1

2 n d̄(ω) is the number of links in the network G prevailing in state ω. Since this state is in
Ω̂n, by P1 we have that limn→∞

ρ(n−1)
2m+n = 0 while limn→∞

∣∣∣1+dkdk
sℓ +

1+dℓ
dℓ

sk

∣∣∣ ≤ 2. Hence, for large
enough n, Ξ can be made arbitrarily small, which yields the desired conclusion.

As a counterpart of Lemma 2 (which applies to action adjustments), Lemma 4 above has some
sharp implications on the changes on the value of the function Φ̃(·) induced by link adjustments.
They are stated in the following corollary.

Corollary 3. Assume ζ1 ̸= θ ̸= ζ2 and let Φ̃ : Ω → R be the function defined by (17). Then, there
exist some n̂ ∈ N such that, if n ≥ n̂, any adjustment taking place at a state ω = (s, G) in Ω̂δn
toward an adjacent state ω′ = (s′, G′) ∈ A(ω) with s′ = s satisfies:[

Φ̃(ω′)− Φ̃(ω)
] [
πi(s, G

′;ψLILi (ω))− πi(s, G;ψ
LIL
i (ω))

]
> 0. (A.16)

for the single pair of agents i and j for whom aij = aij ̸= a′ij = a′ij.

Proof. Denote ϖ ≡ min{|ζ1| , |ζ2|} to be the smallest impact that a link adjustment can have on
the local-interaction payoffs of the two agents involved. Since we assume that ζ1 ̸= θ ̸= ζ2, it
follows that ϖ > 0, independently of the population size n. Thus, provided G′ ̸= G, we have that
|πk(s, G′;ψLILk (ω)) − πk(s, G;ψ

LIL
k (ω))| > ϖ for the two agents k = i, j whose link is affected by

the adjustment considered. Now note that, by virtue of Lemma 4, we can guarantee that there
exist some large enough n̂ such that, if n ≥ n̂, then Ξ < ϖ. This implies that the last term in the
RHS of Equation (A.7) is dominated (in absolute value) by the first two terms, the latter being

29In analogy with Footnote 28, again note that, being state ω′ adjacent to ω with s′ = s, their respective adjacency
matrices must have a′ij = aij for all i and j except for a single pair of agents, k and ℓ, for whom a′kℓ ̸= akℓ.
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precisely equal to the payoff change experienced by agents i and j. This readily establishes the
second, thus establishes (A.16), as desired.

Finally, to complete the proof of Proposition 4, we combine the results established by
Lemmas 1-4 and their Corollaries 1-3. We start by claiming that, by virtue of Assumption A.1, for
any arbitrarily small ϵ1 there exists some n̂1 such that if the population size n ≥ n̂1, then in the
long run (i.e. for large enough t) the randomly visited state ω belongs to Ω̂n with a probability
(given by µLILn , the invariant distribution of the process) that is no smaller than 1− ϵ1. Then we
invoke Assumption A.2 to assert that, for any ϵ2, again chosen arbitrarily small, there must exist
some δ and some n̂2 such that if n ≥ n̂2, µLILn (H̄δ

n) ≥ 1 − ϵ2. It then follows that if we define
ϵ = ϵ1 + ϵ2 and n ≥ max{n̂1, n̂2} there is probability no lower than 1− ϵ that a state ω randomly
visited in the long run belongs to the set Ω̂δn. Next, we invoke Lemmata 1-3 and their Corollaries
1-2 to argue that there exists some n̂3 ≥ max{n̂1, n̂2} such that, if n ≥ n̂3 and an action-revision
opportunity arises at the aforementioned long-run state ω, then the entailed adjustment towards
some adjacent state ω′ = (s′, G) ∈ A(ω) satisfies (A.15). Similarly, by further relying on Lemma
4 and its Corollary 3 we claim that that there exists some n̂4 ≥ max{n̂1, n̂2} such that, if n ≥ n̂4,
(A.16) applies whenever the adjustment taking place at the state ω involves a link. Thus, if we
choose n̂ = max{n̂3, n̂4} the desired conclusion follows, i.e. the subset of states Ω̃n that satisfy
the payoff-potential alignment condition (19) has long-run probability µLILη (Ω̃n) ≥ 1 − ϵ. This
completes the proof of the proposition.

Proof of Proposition 5. The proof of Proposition 5 is a straightforward extension of the proof
of Proposition 3 with the additional requirement that beliefs are stationary. The details of the
proof can be found in Supplementary Appendix C.
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B. Extensions
In the following we briefly illustrate how the simple theoretical model discussed in Subsection

2.1 could be extended along two important dimensions: In Subsection B.1 we allow for directed
links, and in Subsection B.2 we consider heterogeneous linking costs that depend on the actions of
the agents.

B.1. Directed Links
It is possible to consider a directed network. Assume for simplicity a constant linking cost. In

this case the potential function for the GI environment needs to be modified as follows

Φ(s, G) =

n∑
i=1

γisi + θ

n∑
i=1

n∑
j=1

(
1

2
aijaji + aij(1− aji)

)
sisj +

ρ

2

n∑
i=1

n∑
j ̸=i

sisj − κ

n∑
i=1

si −mζ. (B.1)

Here we consider undirected links, as it is standard in the social networks literature on peer effects,
and we leave the detailed analysis of directed networks to future work.

B.2. Action-Specific Heterogeneous Linking Costs
Consider a linking cost between agents i and j given by ζij = ζ1di − ζ2

∑n
j=1 aij(1− sisj) that

allows for linking costs to be lower between agents choosing the same strategy. The correspond-
ing payoff function in the GI environment is given by πi(s, G) = γisi + (θ + ζ2)

∑n
j=1 aijsisj +

ρ
∑n

j=1 sjsi−κsi− ζ1di. This is the same functional form as in (1) up to a shift of the parameter θ.

C. Proof of Proposition 5
In the following we compute an absorbing state of the Markov process formalizing the LIL

scenario in the limit of η → ∞ characterizing the stochastically stable states. In such an absorbing
state (s, G,p), given the beliefs p agents do not have an incentive to change their actions, s, or
links, G. Because differences in the potential correspond to differences in payoffs, this is satisfied
if the potential is maximized for such (s, G) given the beliefs p. Conversely, given (s, G), the
stationary belief updating in (8) must be satiesfied, that is, pi = fi(s,p, G) = φ 1

di

∑n
j=1 aijsj +

(1− φ) 1
di+1(pi +

∑n
j=1 aijpj) for all i = 1, . . . , n. We then proceed by a guess and verify approach

to check that the conditions for such a fixed point are satisfied.
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We first consider the potential maximizing states (s, G) given the beliefs p. The potential
function can be written as:

Φ̃(s, G,p) =
n∑
i=1

γisi +
1

2

n∑
i=1

n∑
j=1

aij(θsisj − ζij) + ρ(n− 1)
n∑
i=1

pisi − κ
n∑
i=1

si.

This can be rewritten as:

Φ̃(s, G,p) = γ̃⊤s+
θ

2
s⊤As− 1

2
u⊤(ζ ⊙A)u,

where we have denoted by
γ̃i = γi + ρ(n− 1)pi − κ.

For a given vector of beliefs, p, the scalar product ⟨γ̃, s⟩ = γ̃⊤s is maximized for si = sign(γ̃i),
and the quadratic form s⊤As is maximized for aij = 1 iff sign(si) = sign(sj), or equivalently
sign(γ̃i) = sign(γ̃j) in the case of ζij < θ. This implies that the stochastically stable network must
be either complete, Kn, empty, Kn, or composed of two cliques, Kn+ ∪Kn−n+ , where in each clique
the agents choose the same actions.

Next, recall that the stationary beliefs Equation (8) can be written as:

pi = φ
1

di

n∑
j=1

aijsj + (1− φ)
1

di + 1
(pi +

n∑
j=1

aijpj),

In a network where all connected agents choose the same action and have the same beliefs, this
simplifies to:

pi = φsi + (1− φ)pi,

which is satisfied for
pi = si.

When pi = si for all i = 1, . . . , n then the potential function can be written as

Φ̃(s, G) =
n∑
i=1

(γi + ρ(n− 1)si − κ) si +
1

2

n∑
i=1

n∑
j=1

aij

(
θsisj − ζ1 +

ζ1 − ζ2
2

(1− γiγj)

)
.

Note that only the last term in this equation depends on the network (through the entries of
the adjacency matrix elements aij). In particular, the term

∑n
i=1

∑n
j=1 aijsisj is maximized over

si, sj ∈ {−1,+1} for aij = 1 iff si = sj . The term
∑n

i=1

∑n
j=1 aij(θsisj − ζ1 + (ζ1 − ζ2)(1− γiγj)/2

is maximized over si, sj ∈ {−1,+1} for aij = 1 iff si = sj = γi = γj if ζ1 < θ < ζ2 and si = sj if
ζ2 < θ. If θ < ζ1 then aij = 0 and we obtain the empty network, Kn.

To summarize, the candidate networks and action profiles that maximize the potential must be
either complete, Kn, empty, Kn, or composed of two disconnected cliques, Kn1 ∪Kn−n1 , in which
all agents in the same clique chose the same action and have the same idiosyncratic preferences.
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In the following we denote by n+ = #({γi = 1 : i = 1, . . . , n}), ν+ = n+/n and define

θ̃∗ = ζ2 +
2(1− κ)

n− n+
,

θ̃∗∗ = ζ2 +
2(1 + κ)

n+
,

κ∗ = 2ν+ − 1.

W.l.o.g. we will further assume that κ ≥ 0. Note also that κ∗ ≤ 1 and κ∗ ≤ 0 if ν+ ≤ 1/2.

We first consider the case of θ < ζ1. In this case the quasi potential maximizing network will
be the empty network Kn. When all agents choose the action si = −1 the quasi potential is given
by

Φ̃((−1, . . . ,−1),Kn) = n− 2n+ + ρn(n− 1) + κn.

When all agents choose the action si = +1 the quasi potential is given by

Φ̃((+1, . . . ,+1),Kn) = n+ − (n− n+) + ρn(n− 1)− κn.

When all agents choose the action si = γi the quasi potential is given by

Φ̃(γ,Kn) = n+ ρ(n− 1)n− κ(2n+ − n).

The difference in the quasi potential between si = −1 and si = γi is given by

Φ̃((−1, . . . ,−1),Kn)− Φ̃(γ,Kn) = 2(κ− 1)n+,

which is positive for κ > 1 and negative for κ < 1. The difference in the quasi potentials between
si = +1 and si = γi is given by

Φ̃((+1, . . . ,+1),Kn)− Φ̃(γ,Kn) = −2(n− n+)(1 + κ)

which is negative for all parameter choices. Moreover, the difference in the quasi potentials between
si = +1 and si = −1:

Φ̃((+1, . . . ,+1),Kn)− Φ̃((−1, . . . ,−1),Kn) = −2((κ+ 1)n− 2n+),

which is positive if
κ < κ∗ = 2ν+ − 1 ≤ 1.

Thus if θ < ζ1, the quasi potential maximizing state is given by the empty network Kn where

1. if ν+ < 1/2 and

(a) κ > 1, then all agents choose the action si = −1.
(b) κ < 1, then all agents choose the action si = γi.

2. if ν+ > 1/2,

(a) κ > κ∗ and
i. κ > 1, then all agents choose the action si = −1.
ii. κ < 1, then all agents choose the action si = γi.

(b) κ < κ∗, then all agents choose the action si = +1.
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Next we consider the case of θ > ζ1. The quasi potential maximizing network is either complete,
Kn, or composed of two cliques, Kn+ ∪Kn−n+ . Further, note that

Φ̃((−1, . . . ,−1),Kn)− Φ̃((+1, . . . ,+1),Kn) = 2((κ+ 1)n− 2n+)

which is increasing in κ and negative if

κ < κ∗ = 2ν∗ − 1,

where, κ∗ ≤ 1 with κ∗ = 1 if ν+ = 1 and κ∗ < 0 if ν+ < 1/2. The latter implies that for ν+ < 1/2
we have that Φ̃((−1, . . . ,−1),Kn) > Φ̃((+1, . . . ,+1),Kn) for any value of κ ≥ 0. We thus need to
distinguish between the cases ν+ < 1/2 and ν+ > 1/2.

Case 1: ν+ < 1/2. The potential for the complete Graph Kn with all agents choosing action
si = −1 is given by

Φ̃((−1, . . . ,−1),Kn) = (n− 2n+) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1)

+ n+(n− n+)(θ − ζ2) + ρn(n− 1) + κn.

The potential for the union of cliques Kn+ ∪Kn−n+ with all agents choosing action si = γi is given
by

Φ̃(γ,Kn+ ∪Kn−n+) = n+
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + ρ(n− 1)n− κ(2n+ − n).

The potential difference between the complete network Kn in which all agents choose action si =
−1) and the union of cliques Kn+∪Kn−n+ in which the agents choose their idiosyncratic preferences
si = γi) is given by

Φ̃((−1, . . . ,−1),Kn)− Φ̃(γ,Kn+ ∪Kn−n+) = n+(2(κ− 1) + n(θ − ζ2) + n+(ζ2 − θ)).

Setting this to zero to find θ̃∗:
θ̃∗ = ζ2 +

2(1− κ)

n− n+
.

Moreover,

Φ̃((−1, . . . ,−1),Kn)− Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is positive for θ > ζ2. Further

Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ̃(γ,Kn+ ∪Kn−n+) = −2n+(1− κ),

which is negative for κ < 1. We can then conclude that:

1. If θ > θ̃∗ and

(a) θ > ζ2 then the potential function of the complete graph Kn with si = −1 is higher
than that of the union of cliques Kn+ ∪Kn−n+ with si = −1 or si = γi. Therefore, the
stochastically stable state is the complete graph Kn with si = −1.

(b) θ < ζ2 then the potential function of the union of cliques Kn+ ∪Kn−n+ with si = −1 is
higher than that of the complete graph Kn with si = −1. Therefore, the stochastically
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stable state is the union of cliques Kn+ ∪Kn−n+ with si = −1.

2. If θ < θ̃∗ and

(a) κ < 1, then the potential function of the union of cliques Kn+ ∪ Kn−n+ with si = γi
is higher than that of the complete graph Kn with si = −1 or the union of cliques
Kn+ ∪ Kn−n+ with si = −1. Therefore, the stochastically stable state is the union of
cliques Kn+ ∪Kn−n+ with si = γi.

(b) κ > 1, then the potential function of the union of cliques Kn+ ∪Kn−n+ with si = −1
is higher than that of the complete graph Kn with si = −1 or the union of cliques
Kn+ ∪ Kn−n+ with si = γi. Therefore, the stochastically stable state is the union of
cliques Kn+ ∪Kn−n+ with si = −1.

Case 2: ν+ > 1/2. We first note that

Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ̃((+1, . . . ,+1),Kn+ ∪Kn−n+) = 2n(κ− κ∗),

which is positive for κ > κ∗ and negative for κ < κ∗. We thus need to further distinguish the cases
κ > κ∗ and κ < κ∗.

1. Subcase 2.1: κ > κ∗. The quasi potential for the complete graph Kn in which all agents
choose action si = −1 is given by

Φ̃((−1, . . . ,−1),Kn) = (n− 2n+) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1)

+ n+(n− n+)(θ − ζ2) + ρ(n− 1)n+ κn.

The quasi potential for the union of cliques Kn+ ∪Kn−n+ in which all agents choose action
si = γi is given by

Φ̃(γ,Kn+ ∪Kn−n+) = n+
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + ρ(n− 1)n− κ(2n+ − n).

The difference between the quasi potentials for the complete graph Kn (all si = −1) and the
union of cliques Kn+ ∪Kn−n+ (si = γi) is given by

Φ̃((−1, . . . ,−1),Kn)− Φ̃(γ,Kn+ ∪Kn−n+) = n+(2(κ− 1) + n(θ − ζ2) + n+(ζ2 − θ)).

Setting this to zero to find θ̃∗:
θ̃∗ = ζ2 +

2(1− κ)

n− n+
.

Moreover,

Φ̃((−1, . . . ,−1),Kn)− Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+),

which is zero if θ = ζ2. Further,

Φ̃((−1, . . . ,−1),Kn+ ∪Kn−n+)− Φ̃(γ,Kn+ ∪Kn−n+) = −2n+(1− κ),

which is negative for κ < 1. We then can conclude the following:

(a) If θ > θ̃∗ and
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i. θ > ζ2 then the quasi potential function of the complete graph Kn with si = −1
is higher than that of the union of cliques Kn+ ∪Kn−n+ with si = −1 or si = γi.
Therefore, the stochastically stable state is the complete graph Kn with si = −1.

ii. θ < ζ2 then the quasi potential function of the union of cliques Kn+ ∪Kn−n+ with
si = −1 is higher than that of the complete graph Kn with si = −1 or the union of
cliques Kn+ ∪Kn−n+ with si = γi. Therefore, the stochastically stable state is the
union of cliques Kn+ ∪Kn−n+ with si = −1.

(b) If θ < θ̃∗ and
i. κ < 1, then the quasi potential function of the union of cliques Kn+ ∪Kn−n+ with
si = γi is higher than that of the complete graph Kn with si = −1 or the union of
cliques Kn+ ∪Kn−n+ with si = −1. Therefore, the stochastically stable state is the
union of cliques Kn+ ∪Kn−n+ with si = γi.

ii. κ > 1, then the quasi potential function of the union of cliques Kn+ ∪Kn−n+ with
si = −1 is higher than that of the complete graph Kn with si = −1 or the union of
cliques Kn+ ∪Kn−n+ with si = γi. Therefore, the stochastically stable state is the
union of cliques Kn+ ∪Kn−n+ with si = −1.

2. Subcase 2.2: κ < κ∗. The quasi potential for the complete graph Kn with all agents choosing
action si = +1 is given by

Φ̃((+1, . . . ,+1),Kn) = (2n+ − n) +
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1)

+ n+(n− n+)(θ − ζ2) + ρ(n− 1)n− κn.

The quasi potential in the union of cliques Kn+ ∪ Kn−n+ with all agents choosing action
si = γi is given by

Φ̃(γ,Kn+ ∪Kn−n+) = n+
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ1) + ρ(n− 1)n− κ(2n+ − n).

The quasi potential in the union of cliques Kn+ ∪ Kn−n+ with all agents choosing action
si = +1 is

Φ̃((+1, . . . ,+1),Kn+∪Kn−n+) = (2n+−n)+
1

2
(n(n−1)−2n+(n−n+))(θ−ζ1)+ρ(n−1)n−κn.

The difference between the quasi potentials of the complete graph Kn (all si = +1) and the
union of cliques Kn+ ∪Kn−n+ (all si = γi) is then

Φ̃((+1, . . . ,+1),Kn)− Φ̃(γ,Kn+ ∪Kn−n+) = −(n− n+)(2(κ+ 1) + n+(ζ2 − θ)).

Setting this to zero we obtain the threshold:

θ̃∗∗ = ζ2 +
2(κ+ 1)

n+
.

Moreover,

Φ̃((+1, . . . ,+1),Kn)− Φ̃((+1, . . . ,+1),Kn+ ∪Kn−n+) = n+(θ − ζ2)(n− n+).

which is zero if θ = ζ2. Further,

Φ̃((+1, . . . ,+1),Kn+ ∪Kn−n+)− Φ̃(γ,Kn+ ∪Kn−n+) = −2(n− n+)(κ+ 1),
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which is negative for all parameter values. We can summarize the above cases as follows:

(a) If θ > θ̃∗∗ (which also implies that θ > ζ2) then the potential function of the complete
graph Kn with si = +1 is higher than that of the union of cliques Kn+ ∪Kn−n+ with
si = γi or si = +1. Therefore, the stochastically stable state is the complete graph Kn

with si = +1.
(b) If θ < θ̃∗∗ then the potential function of the union of cliques Kn+ ∪Kn−n+ with si = γi

is higher than that of the complete graph Kn with si = +1 or the union of cliques
Kn+ ∪ Kn−n+ with si = +1. Therefore, the stochastically stable state is the union of
cliques Kn+ ∪Kn−n+ with si = γi.

Thus, if θ > ζ1, the stochastically stable state is either complete Kn or composed of two cliques
Kn+ ∪Kn−n+ . More precisely,

1. if ν+ < 1/2,

(a) θ > θ̃∗ and
i. θ > ζ2, then the stochastically stable state is the complete graph Kn with si = −1.
ii. θ < ζ2, then the stochastically stable state is the union of cliques Kn+ ∪Kn−n+ with

si = −1.
(b) θ < θ̃∗ and

i. κ < 1, then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = γi.
ii. κ > 1, then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = γi.

2. if ν+ > 1/2,

(a) κ > κ∗,
i. θ > θ̃∗ and

• θ > ζ2, then the stochastically stable state is the complete graph Kn with
si = −1.

• θ < ζ2, then the stochastically stable state is the union of cliques Kn+ ∪Kn−n+

with si = −1.
ii. θ < θ̃∗ and

• κ < 1, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = γi.

• κ > 1, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

(b) κ < κ∗ and
i. θ > θ̃∗∗ then the stochastically stable state is the complete graph Kn with si = +1.
ii. θ < θ̃∗∗, then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = γi.

This proves Proposition E.2. Next, note that for n→ ∞ we get

lim
n→∞

θ∗ = lim
n→∞

θ∗∗ = ζ2.

Hence, when n → ∞ then if θ > ζ1, the stochastically stable state is either complete Kn or
composed of two cliques Kn+ ∪Kn−n+ . More precisely,

7



1. if ν+ < 1/2,

(a) θ > ζ2, then the stochastically stable state is the complete graph Kn with si = −1.
(b) θ < ζ2 and

i. κ < 1, then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = γi.
ii. κ > 1, then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = −1.

2. if ν+ > 1/2,

(a) κ > κ∗,
i. θ > ζ2, then the stochastically stable state is the complete graph Kn with si = −1.
ii. θ < ζ2 and

• κ < 1, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = γi.

• κ > 1, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

(b) κ < κ∗ and
i. θ > ζ2, then the stochastically stable state is the complete graph Kn with si = +1.
ii. θ < ζ2, then the stochastically stable state is the union of two cliques Kn+ ∪Kn−n+

with si = γi.

A concise summary of the above cases in the large population limit (n→ ∞) is stated in Proposition
5. This concludes the proof.

D. Finite Noise Equilibrium Characterization
In this section we analyze the stationary states in the case of finite noise (while the stochastically

stable state characterizations in Propositions 3 and 5 cover only the case of vanishing noise, i.e.,
the limit of η → ∞). For concreteness, we focus on two especially relevant statistics, the average
connectivity (network degree) and the average action, as they depend on the linking costs ζ (=
ζ1 = ζ2) and the noise parameter η.

D.1. Global Information

We start by characterizing the expected number of links induced by the distribution µGIη (·).

Proposition D.1. Assume homogeneous linking costs, ζ1 = ζ2 = ζ. Then the expected number of
links in the stationary state is given by

Eη(m) =
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)eη(ρ(2l(k,j)−(

n
2)))−κ(n−2(n++k−2j))

×
(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)( l(k, j)

1 + e−η(θ−ζ)
+

(
n
2

)
− l(k, j)

1 + eη(θ+ζ)

)
, (D.1)
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where l(k, j) is given by

l(k, j) =
n2 + (2(2j − k)− 1)n+ 2(2j − k)2 − 2(n+ 2(2j − k)− n+)n+

2
, (D.2)

n+ = #({γi = 1 : i = 1, . . . , n}), and we have that limζ→∞ Eη(m) = 0.30

Before proceeding with the proof of Proposition D.1 we state three useful lemmas that will be
needed later. In these lemmas we assume that ζ1 = ζ2 = ζ.

Lemma D.1. Assume that ζ1 = ζ2 = ζ. The marginal distribution of the action levels, s ∈ S =
{−1,+1}n, is given by

µGIη (s) =
1

η eη
η(s), (D.3)

where we have denoted by

η(s) ≡
n∑
i=1

γi − κ+
ρ

2

n∑
j ̸=i

sj

 si +
n∑

j=i+1

(
1

η
ln
(
1 + eη(θsisj−ζ)

)) , (D.4)

and the normalizing constant is given by

η = ∑
s∈{−1,+1}n

eηη(s). (D.5)

Proof of Lemma D.1. We first compute the partition function (cf. Grimmett, 2010; Wainwright and
Jordan, 2008), which appears as the denominator in (15), explicitly. We have that

η ≡ ∑
G∈Gn

∑
s∈{−1,+1}n

eηΦ(s,G) =
∑

s∈{−1,+1}n
eη

∑n
i=1(γi−κ+

ρ
2

∑n
j ̸=i sj)si

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
,

(D.6)

where we have used the fact that∑
G∈Gn

e
∑n

i<j aijσij =
n∏
i=1

n∏
j=i+1

(1 + eσij ) , (D.7)

for any real and symmetric σij = σji. Introducing the Hamiltonian (cf. Grimmett, 2010)

η(s) ≡
n∑
i=1

γi − κ+
ρ

2

n∑
j ̸=i

sj

 si +
n∑

j=i+1

(
1

η
ln
(
1 + eη(θsisj−ζ)

)) , (D.8)

we can write the partition function as follows η =∑s∈{−1,+1}n e
ηη(s). With the Hamiltonian we

30An explicit expression for the partition function η can be found in Lemma D.3 in Appendix A.
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can write the marginal distribution as follows

µGIη (s) =
1

η
∑
G∈Gn

eηΦ(s,G) =
1

ηn eη
∑n

i=1(γi−κ+
ρ
2

∑n
j ̸=i sj)si

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
=

1

η eη
η(s),

(D.9)

where η(s) has been defined in (D.8).

Lemma D.2. Assume that ζ1 = ζ2 = ζ. Conditional on the action profile, s ∈ S ∈ {−1,+1}n,
the probability of observing the network G is given by µGIη (G|s) =

∏n
i=1

∏n
j=i+1 pij(si, sj)

aij

(1− pij(si, sj))
1−aij , where

pij(si, sj) =
eη(θsisj−ζ)

1 + eη(θsisj−ζ)
. (D.10)

Proof of Lemma D.2. With the marginal distribution from (D.3) we can write the conditional dis-
tribution as

µGIη (G|s) =
µGIη (s, G)

µGIη (s)
=

eη(
∑n

i=1(γi−κ+
ρ
2

∑n
j ̸=i sj)si+

θ
2

∑n
i=1

∑n
j=1 aijsisj−mζ)

eη
∑n

i=1(γi−κ+
ρ
2

∑n
j ̸=i sj)si

∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
=

eη
∑n

i<j aij(θsisj−ζ)∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

) =

n∏
i<j

eηaij(θsisj−ζ)

1 + eη(θsisj−ζ)

=
n∏
i<j

(
eη(θsisj−ζ)

1 + eη(θsisj−ζ)

)aij (
1− eη(θsisj−ζ)

1 + eη(θsisj−ζ)

)1−aij

=

n∏
i<j

pij(si, sj)
aij (1− pij(si, sj))

1−aij . (D.11)

Hence, conditional on the action choices s, we obtain the likelihood of an inhomogeneous random
graph with link probability (Bollobas et al., 2007): pij(si, sj) = eη(θsisj−ζ)/(1 + eη(θsisj−ζ)).

In the following we provide an explicit computation of the partition function introduced in
(D.6).

Lemma D.3. Assume that ζ1 = ζ2 = ζ. Then the partition function, η =
∑

G∈Gn

∑
s∈{−1,+1}n

eηΦ(s,G), is given by

η = n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)eη(ρ(2l(k,j)−(

n
2)))−κ(n−2(n++k−2j))

×
(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
, (D.12)

where l(k, j) = 1
2(n

2+(2(2j− k)− 1)n+2(2j− k)2− 2(n+2(2j− k)−n+)n+), and n+ = #({γi =
1 : i = 1, . . . , n}).

Note that, while the evaluation of the partition function in (D.6) requires the computation
of a sum with 2n terms, the partition function in (D.12) requires the evaluation of only 1

2(n+ +
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1)(2(n+ 1)− n+) = O(n) terms. With (D.12) the marginal distribution µGIη (s) in (D.3) can then
be efficiently computed.

Proof of Lemma D.3. Assume w.l.o.g. that the agents are ordered such that γ1 = . . . γn+ = +1
and γn++1 = . . . γn = −1, with 0 ≤ n+ ≤ n. Let us consider all configurations s ∈ {−1,+1}n for
which there k = 0, . . . , n agents with si = γi. For a given k, there are

(
n+

j

)
ways to select j agents

from n+ choosing si = γi = +1, and there are
(n−n+

k−j
)

ways to select k− j agents from n− choosing
si = γi = −1, for each j = 0, . . . ,min{k, n+}. Hence, there are

∑min{k,n+}
j=0

(
n+

j

)(n−n+

k−j
)

ways to
obtain alignments of γ and s such that

∑n
i=1 siγi = k − (n− k) = 2k − n.

Next, we consider the products sisj . Since all the j agents in n+ with si = +1 choose the
same action +1, and all the k− j agents in n− with si = −1 choose the same action −1 we obtain
l(k, j) =

(
j
2

)
+
(
k−j
2

)
+
(
n+−j

2

)
+
(
n−n+−(k−j)

2

)
+ (n+ − j)(k − j) +j(n − n+ − (k − j)) pairs whose

product of actions gives sisj = +1. The first term in the equation above counts all pairs of agents
with action +1 in the first set (with all γi = +1), the second all pairs of agents with action −1 in
the second set (with all γi = −1), the third term the pairs of agents with action −1 in the first set
(with all γi = +1), the fourth term the pairs of agents with action +1 in the second set (with all
γi = −1), the fifth term counts the pairs with agents in the first set who choose action −1 and the
agents in the second set who chose action −1, while the last term counts the pairs with agents in
the first set who choose action +1 and agents in the second set who also choose action +1.

We can further simplify l(k, j) to l(k, j) = 1
2(n

2 + (2(2j − k)− 1)n+ 2(2j − k)2 −2(n+ 2(2j −
k)− n+)n+). Then we can write

η = ∑
s∈{−1,+1}n

eηη(s) =
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
exp

{
η

[
(2k − n)

−κ (n− 2(n+ + k − 2j)) + ρ

(
2l(k, j)−

(
n

2

))
+

l(k, j)

η
ln
(
1 + eη(θ−ζ)

)
+

(
n
2

)
− l(k, j)

η
ln
(
1 + e−η(θ+ζ)

)]}

=
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)eη(ρ(2l(k,j)−(

n
2)))−κ(n−2(n++k−2j))

×
(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
,

where n+ = #({γi = 1 : i = 1, . . . , n}).

Proof of Proposition D.1. With the partition function in Lemma D.3 we can compute the expected
number of links, m, as follows

Eη(m) =
∑
G∈Gn

∑
s∈{−1,+1}n

mµGIη (s, G) =
1

η
∑
G∈Gn

∑
s∈{−1,+1}n

meηΦ(s,G)︸ ︷︷ ︸
− 1

η
∂
∂ζ
eηΦ(s,G)

= −1

η

1

η
∂η
∂ζ

. (D.13)
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Figure D.1: The average degree d̄ = 2m/n (left panel) and the average action level s̄ (right panel) across different
values of the linking cost ζ ∈ [0, 2] and varying noise η ∈ {1, 2, 3}. The parameters used are n = 5, n+ = 2, κ = 0.1,
ρ = 0.1, λ = χ = ξ = 1 and θ = 0.75. Dashed lines indicate the theoretical prediction of (D.1) in Proposition D.1 and
(D.15) in Proposition D.2, respectively, while circles indicate averages across 1000 numerical Monte Carlo simulations
of the model using the “next reaction method” for simulating a continuous time Markov chain (cf. Anderson, 2012;
Gibson and Bruck, 2000).

With (D.6) and (D.13) we then can compute the expected number of links as

Eη(m) =
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
eη(2k−n)eη(ρ(2l(k,j)−(

n
2)))−κ(n−2(n++k−2j))

×
(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)( l(k, j)

1 + e−η(θ−ζ)
+

(
n
2

)
− l(k, j)

1 + eη(θ+ζ)

)
, (D.14)

and one can show that limζ→∞ Eη(m) = 0.

Note further that for θ = ρ = 0 (D.14) simplifies to Eη(m) = 1η

(
n
2

) (
1 + e−ηζ

)(n2) 1
1+eηζ∑n

k=0

∑min{k,n+}
j=0

(
n+

j

) (n−n+

k−j
)
eη(2k−n) = 1η

e−ηn

π(1+eηζ)

(
n
2

) (
1 + e−ηζ

)(n2) [π
(
1 + e2η

)n −e2(n+1)η

sin(nπ) Γ(n+ 1) 2F1

(
1, 1;n+ 2;−e2η

)
].

In the left panel of Figure D.1 we compare the average degree d̄ obtained by averaging across
simulations with the expected value 2Eη(m)/n from Proposition D.1 for different values of the
linking cost ζ ∈ [0, 2] and noise parameter η ∈ {1, 2, 3}. The theoretical result predicts well the
simulated average degree, which naturally decreases with increasing linking costs ζ.

Now we turn to the average action level, which leads to the following counterpart of Proposition
D.1.

Proposition D.2. Assume homogeneous linking costs, ζ1 = ζ2 = ζ. Then the expected average
action level, s̄ = 1

n

∑n
i=1 si, in the stationary state is given by

Eη(s̄) =
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
n+ 4j − 2(n+ + k)

n
eη(2k−n)

× eη(ρ(2l(k,j)−(
n
2)))−κ(n−2(n++k−2j))

(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
, (D.15)

where l(k, j) is defined in (D.2) and n+ = #({γi = 1 : i = 1, . . . , n}).
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Proof of Proposition D.2. Assume that ζ1 = ζ2 = ζ. Then the average action level s̄ = 1
n

∑n
i=1 si =

1
n⟨u, s⟩ is given by

Eη(s̄) =
∑

s∈{−1,+1}n
s̄µGIη (s) =

1

η
∑

s∈{−1,+1}n

1

n
⟨u, s⟩eηη(s)

=
1

η
n∑
k=0

min{k,n+}∑
j=0

(
n+
j

)(
n− n+
k − j

)
n+ 4j − 2(n+ + k)

n

× eη(2k−n)eη(ρ(2l(k,j)−(
n
2)))−κ(n−2(n++k−2j))

(
1 + eη(θ−ζ)

)l(k,j) (
1 + e−η(θ+ζ)

)(n2)−l(k,j)
.

The average action level s̄ in Proposition D.2 is illustrated in the right panel of Figure D.1
across different values of the linking cost ζ and for varying levels of noise, as parameterized by
η. The average action is increasing with ζ and more sharply so as the level of noise is decreasing
(respectively, η is increasing).

D.2. Local Information and Learning

The analysis of the LIL model is more complicated because its belief-formation ψLIL(·) map-
ping given in (9) depends in an intricate manner on the current network structure. To make this
characterization tractable, we rely on a mean field approximation that is commonly used in ana-
lyzing stochastic network formation models (see e.g., Jackson and Rogers, 2007). By making this
approximation, in the stationary beliefs equation derived from (9):

p = φ
[
I− (1− φ)D̂−1Â

]−1
D−1As, (D.16)

we replace the entries of the adjacency matrix, A = (aij)
n
i,j=1 with their expected values: aij =

eη(θsisj−ζ)/(1 + eη(θsisj−ζ)) for all 1 ≤ i, j,≤ n. Similarly, D, Â and D̂ are computed. Under
this approximation, the beliefs, p, become a function of the actions, s, only. This will allow us to
compute the partition function (η) and other statistics of interest – such as the average degree or
the average action level – for an arbitrary level of noise (η).

The following proposition characterizes the expected number of links for an arbitrary level of
noise under a mean field approximation.

Proposition D.3. Consider homogeneous linking costs, ζ1 = ζ2 = ζ. Then, under a mean field
approximation, the expected number of links is given by

Eη(m) ≃ 1

η
∑

s∈{−1,+1}n
eη⟨γ̃,s⟩hη(s), (D.17)

where γ̃i = γi+ρ(n−1)pi−κ, beliefs p are given by Eq. (D.16), the adjacency matrix A = (aij)
n
i,j=1

has elements aij = eη(θsisj−ζ)/(1 + eη(θsisj−ζ)), D = diag(d1, . . . , dn) is the diagonal matrix of the
degrees di =

∑n
j=1 aij, the partition function is

η = ∑
s∈{−1,+1}n

eη⟨γ̃,s⟩fη(s), (D.18)
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and

hη(s) =

(
e−η(ζ+θ) + 1

)α(s) (
eη(θ−ζ) + 1

)β(s)−1 (
(α(s) + β(s))eη(θ−ζ) + α(s) + β(s)e2ηθ

)
1 + eη(θ+ζ)

,

fη(s) =
(
1 + e−η(ζ+θ)

)α(s) (
1 + eη(θ−ζ)

)β(s)
, (D.19)

with α(s) = n+(s)(n − n+(s)), β(s) = 1
2(n(n − 1) − 2n+(s)(n − n+(s))), n+(s) = #({si = 1 : i =

1, . . . , n}) and ⟨·, ·⟩ is the usual scalar product in RN .

Before proceeding with the proof of Proposition D.3 we state the following lemma which will
be useful later.

Lemma D.4. For any s ∈ S = {−1,+1}n we have that

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
=
(
1 + e−η(θ+ζ)

)n+(n−n+) (
1 + eη(θ−ζ)

)n(n−1)−2n+(n−n+)

2
,

where n+ = #({γi = 1 : i = 1, . . . , n}).

Proof of Lemma D.4. In the following we denote by f(s) ≡
∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
and

g(si, sj) ≡ 1 + eη(θ−ζ). Then we can write

f(s) =

n+−1∏
i=1

 n+∏
j=i+1

g(si, sj)
n∏

j=n++1

g(si, sj)

 n∏
j=n++1

g(sn+ , sj)
n∏

i=n++1

n∏
j=i+1

g(si, sj)

= g(+1,−1)n+(n−n+)g(+1,+1)
n(n−1)−2n+(n−n+)

2 =
(
1 + e−η(θ+ζ)

)n+(n−n+) (
1 + eη(θ−ζ)

)n(n−1)−2n+(n−n+)

2

This concludes the proof.

Proof of Proposition D.3. Assume that ζ1 = ζ2 = ζ. Then, in the belief-based model, the quasi
partition function is given by

η ≡ ∑
G∈Gn

∑
s∈{−1,+1}n

eηΦ̃(s,p,G) =
∑

s∈{−1,+1}n
eη

∑n
i=1 γ̃isi

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
,

where we have denoted by γ̃i = γi + ρ(n− 1)pi − κ. The expected number of links is given by

Eη (m) = −1

η

1

η
∂η
∂ζ

= −1

η

1

η
∑

s∈{−1,+1}n
eη

∑n
i=1 γ̃isi

∂

∂ζ

n∏
i=1

n∏
j=i+1

(
1 + eη(θsisj−ζ)

)
.

Denoting by fη(s) ≡
∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
from Lemma D.4 it follows that fη(s) = (1+

e−η(θ+ζ))α(s)(1+ eη(θ−ζ))β(s), where α(s) = n+(s)(n−n+(s)), β(s) = 1
2(n(n−1)−2n+(s)(n−n+(s)))

and n+(s) = #({si = 1 : i = 1, . . . , n}). Moreover one can show that

hη(s) ≡ ∂fη(s)

∂ζ
=

(
e−η(ζ+θ) + 1

)α(s) (
eη(θ−ζ) + 1

)β(s)−1 (
(α(s) + β(s))eη(θ−ζ) + α(s) + β(s)e2ηθ

)
1 + eη(ζ+θ)

,
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Figure D.2: The average degree d̄ = 2m/n (left panel) and the average action level s̄ (right panel) across different
values of the linking cost ζ ∈ [0, 2], η ∈ {1, 2, 3}, n = 5, n+ = 2, κ = 0.1, ρ = 0.1, λ = χ = ξ = 1, φ = 0.5 and θ = 0.75.
Dashed-dotted lines indicate the theoretical predictions of d̄ = 2m/n in (D.17) in Proposition D.3 and of s̄ in (D.21)
of Proposition D.4, respectively, while circles indicate averages across 1000 numerical Monte Carlo simulations of the
model using the “next reaction method” for simulating a continuous time Markov chain (cf. Anderson, 2012; Gibson
and Bruck, 2000).

and we can write Eη(m) = 1η

∑
s∈{−1,+1}n e

η⟨γ̃,s⟩hη(s), where η =
∑

s∈{−1,+1}n e
η⟨γ̃,s⟩fη(s). Fi-

nally, stationary beliefs are given by (A.4) so that we can write them as a function of the actions
and network as p = φ

[
I− (1− φ)D̂−1Â

]−1
D−1As. Moreover, from Lemma D.2 we know that

the linking probability conditional on actions s is given by

pij =
eη(θsisj−ζ)

1 + eη(θsisj−ζ)
, (D.20)

and the expected value of aij of the (i, j)-th element of A is given by pij . This concludes the
proof.

The left panel in Figure D.2 shows the average degree d̄ = 2Eη(m)/n across different values of
the linking cost ζ ∈ [0, 2] and η ∈ {1, 2, 3}. The average degree is decreasing with the linking cost ζ.
The decrease is becoming sharper as the level of noise is decreasing (respectively, η is increasing).

The next proposition characterizes the average action level for an arbitrary level of noise under
a mean field approximation.

Proposition D.4. Consider homogeneous linking costs, ζ1 = ζ2 = ζ. Then, under a mean field
approximation, the expected average action level, s̄, is given by

Eη(s̄) ≃ 1

η
1

n

∑
s∈{−1,+1}n

⟨u, s⟩eη⟨γ̃,s⟩fη(s), (D.21)

with fη(·) given by (D.19), the partition function is given by (D.18), γ̃i = γi+ρ(n−1)pi−κ, beliefs
p are given by Eq. (D.16), the adjacency matrix A = (aij)

n
i,j=1 has elements aij = eη(θsisj−ζ)/(1 +

eη(θsisj−ζ)), D = diag(δ1, . . . , δn) is the diagonal matrix of the degrees δi =
∑n

j=1 aij, and ⟨·, ·⟩ is
the usual scalar product in RN .

Proof of Proposition D.4. Assume that ζ1 = ζ2 = ζ. Then the average action level s̄ = 1
n

∑n
i=1 si =

1
nu

⊤s = 1
n⟨u, s⟩ is given by Eη(s̄) =

∑
s∈{−1,+1}n s̄µ

GI
η (s) = 1η

∑
s∈{−1,+1}n

1
n⟨u, s⟩ e

η
∑n

i=1 γ̃isi∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
where we have denoted by γ̃i = γi + ρ(n − 1)pi − κ. Denoting by

fη(s) ≡
∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)
from Lemma D.4 it follows that fη(s) =

(
1 + e−η(θ+ζ)

)α(s)
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(
1 + eη(θ−ζ)

)β(s)
, where α(s) = n+(s)(n − n+(s)), β(s) = 1

2(n(n − 1) − 2n+(s)(n − n+(s))) and
n+(s) = #({si = 1 : i = 1, . . . , n}), and hence Eη(s̄) = 1η

1
n

∑
s∈{−1,+1}n ⟨u, s⟩eη

∑n
i=1 γ̃isi (1+

e−η(θ+ζ))α(s)(1+ eη(θ−ζ))β(s). Finally, the stationary beliefs p(s) as a function of the actions s can
be computed as in the proof of Proposition D.3.

The right panel in Figure D.2 shows the average action level s̄ across different values of the
linking cost ζ ∈ [0, 2] and noise η ∈ {1, 2, 3}. The average action level is increasing with ζ. The
increase is becoming sharper as the level of noise is decreasing (respectively, η is increasing). Figure
D.2 also illustrates a good match between the theory and simulations for different values of ζ and
η.

E. Equilibrium Characterization for Finite Populations & Small
Noise

E.1. Complete Information
The following proposition provides a complete characterization of the Stochastically Stable

States (SSS) for finite populations in the complete information environment (generalizing Proposi-
tion 3).

Proposition E.1. Let n+ = #({γi = 1 : i = 1, . . . , n}), ν+ = n+/n and denote by

θ∗ = ζ2 +
2(1− κ)

n− n+
− 2ρ,

θ∗∗ = ζ2 +
2(1 + κ)

n+
− 2ρ,

κ∗ = 2ν+ − 1,

ρ∗ =
1− κ

n− n+
,

ρ∗∗ =
1 + κ

n+
.

Moreover, w.l.o.g. assume that κ ≥ 0.

(i) If θ < ζ1, the stochastically stable state in the limit of η → ∞ is given by the empty network,
Kn with the following action profiles:

1. If ν+ < 1/2 and

(a) ρ > ρ∗, then all agents choose the action si = −1.
(b) ρ < ρ∗, then all agents choose the action si = γi.

2. If ν+ > 1/2,

(a) κ > κ∗ and
i. ρ > ρ∗, then all agents choose the action si = −1.

ii. ρ < ρ∗, then all agents choose the action si = γi.
(b) κ < κ∗ and

i. ρ > ρ∗∗, then all agents choose the action si = +1.
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ii. ρ < ρ∗∗, then all agents choose the action si = γi.

(ii) For the case of θ > ζ1, the stochastically stable state is either a complete network, Kn, or
composed of the union of two cliques, Kn+ ∪Kn−n+, where all agents in the same clique have
the same preference γi and choose the same action. More precisely:

1. If ν+ < 1/2,

(a) θ > θ∗ and
i. θ > ζ2, then the stochastically stable state is the complete network Kn with
si = −1.

ii. θ < ζ2, then the stochastically stable state is the union of two cliques Kn+∪Kn−n+

with si = −1.
(b) θ < θ∗ and

i. ρ < ρ∗ then the stochastically stable state is the union of two cliques Kn+∪Kn−n+

with si = γi.
ii. ρ > ρ∗ then the stochastically stable state is the union of two cliques Kn+∪Kn−n+

with si = −1.

2. If ν+ > 1/2,

(a) κ > κ∗,
i. θ > θ∗ and

• θ > ζ2, then the stochastically stable state is the complete network Kn with
si = −1.

• θ < ζ2, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

ii. θ < θ∗ and
• ρ < ρ∗ then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = γi.

• ρ > ρ∗ then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

(b) If κ < κ∗,
i. θ > θ∗∗ and

• θ > ζ2, then the stochastically stable state is the complete network Kn with
si = +1.

• θ < ζ2, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = +1.

ii. θ < θ∗∗ and
• ρ < ρ∗∗ then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = γi

• ρ > ρ∗∗ then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = +1.

Proof of Proposition E.1. The statement follows from the proof of Proposition 3 for finite n.
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Figure E.1: Simulation results for the GI scenario on the average degree of the network d̄ (left panel) and the average
action s̄ (right panel) for varying values of θ and η, using the “next reaction method” for simulating a continuous
time Markov chain (cf. Anderson, 2012; Gibson and Bruck, 2000). The circles represent averages obtained across
1000 Monte Carlo runs under the following parameters: n = 10, η ∈ {1, 10, 100}, λ = χ = ξ = 1, and ρ = 0.1.
The thresholds ζ1 and ζ2 are indicated with a vertical dashed line. As η becomes large, for θ < ζ1 the network is
empty (Kn), for ζ1 < θ < ζ2 the network is partitioned into two type-homogeneous cliques (completely connected
subnetworks, denoted by Kn+ and Kn−n+), and for ζ2 < θ it is complete (Kn).

Proposition E.1 shows that when the idiosyncratic preference is large enough (i.e., θ is small
enough) in the payoff function of (1) then the society is segregated in disconnected communities
in which each agent is choosing the action in accordance with her idiosyncratic preference (γi = si
for all i = 1, . . . , n), while if the peer effect is strong enough (the conformity parameter θ is large
enough) then the society becomes completely connected and all agents choose the same action
(homogeneous society). The action chosen in the latter case is determined by the idiosyncratic
preference of the majority. That is, if more agents have an idiosyncratic preference γi = +1
(and ν+ < 1/2) then all agents will choose si = +1, and vice versa. Finally, if linking is too
costly (ζ2 > θ), then all agents are isolated and choose their idiosyncratic preference if the global
conformity parameter ρ is not too high (ρ < ρ∗).

E.2. Local Information and Learning
The following proposition provides a characterization of the Stochastically Quasi-stable States

(QSS) for finite populations in the belief formation environment (generalizing Proposition 5).

Proposition E.2. Let n+ = #({γi = 1 : i = 1, . . . , n}), ν+ = n+/n and denote by

θ̃∗ = ζ2 +
2(1− κ)

n− n+
,

θ̃∗∗ = ζ2 +
2(1 + κ)

n+
,

κ∗ = 2ν+ − 1.

Moreover, w.l.o.g. assume that κ ≥ 0. Then, in the stochastically stable state in the limit of η → ∞,
we have that beliefs are consistent with actions, pi = si, for all i = 1, . . . , n, where:
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(i) If θ < ζ1 then the stochastically stable state is given by the empty network, Kn. Further,

1. if ν+ < 1/2 and

(a) κ > 1, then all agents choose the action si = −1.
(b) κ < 1, then all agents choose the action si = γi.

2. if ν+ > 1/2 and

(a) κ > κ∗:
i. κ > 1, then all agents choose the action si = −1.

ii. κ < 1, then all agents choose the action si = γi.
(b) κ < κ∗, then all agents choose the action si = +1.

(ii) If θ > ζ1 then the stochastically stable is either the complete network, Kn, or composed of a
union of two cliques, Kn+∪Kn−n+, where all agents in the same clique have the same preference
γi and choose the same action. More precisely,

1. if ν+ < 1/2,

(a) θ > θ̃∗ and
i. θ > ζ2, then the stochastically stable state is the complete network Kn with
si = −1.

ii. θ < ζ2, then the stochastically stable state is the union of two cliques Kn+∪Kn−n+

with si = −1.
(b) θ < θ̃∗ and

i. κ < 1, then the stochastically stable state is the union of two cliques Kn+∪Kn−n+

with si = γi.
ii. κ > 1, then the stochastically stable state is the union of two cliques Kn+∪Kn−n+

with si = −1.

2. if ν+ > 1/2,

(a) κ > κ∗,
i. θ > θ̃∗ and

• θ > ζ2, then the stochastically stable state is the complete network Kn with
si = −1.

• θ < ζ2, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

ii. θ < θ̃∗ and
• κ < 1, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = γi.

• κ > 1, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = −1.

(b) κ < κ∗,
i. θ > θ̃∗∗ and

• θ > ζ2, then the stochastically stable state is the complete network Kn with
si = +1.
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Figure E.2: Simulation results for the LIL scenario on the average degree of the network d̄ (left panel) and the
average action s̄ (right panel) for varying values of θ and η, using the “next reaction method” for simulating a
continuous time Markov chain (cf. Anderson, 2012; Gibson and Bruck, 2000). The circles represent averages obtained
across 1000 Monte Carlo runs under the following parameters: n = 10, η ∈ {1, 10, 100}, λ = χ = ξ = 1, φ = 0.5,
and ρ = 0.1. The stochastically stable states in the limit of large η corresponds to Proposition 5. The thresholds
ζ1 and ζ2 are indicated with a vertical dashed line. As η becomes large, for θ < ζ1 the network is empty (Kn), for
ζ1 < θ < ζ2 the network is partitioned into two type-homogeneous cliques (Kn+ and Kn−n+), and for ζ2 < θ it is
complete (Kn).

• θ < ζ2, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = +1.

ii. θ < θ̃∗∗, then the stochastically stable state is the union of two cliques Kn+ ∪
Kn−n+ with si = +1.

Proof of Proposition E.2. The statement follows from the proof of Proposition 5 for finite n.

From Proposition E.2 we observe that the possible stochastically stable actions and networks are
the same as in Proposition E.1, and the beliefs are identical to the actions. This implies that when
the stochastically stable network is complete, then the beliefs (about the average action chosen in
the entire population) are correct. But when the stochastically stable network is a union of two
cliques, Kn+ ∪Kn−n+ , then the beliefs do not correspond to the average action chosen in the entire
population, but represent only the average action chosen in the local clique.

F. Context and Historical View of the Egyptian Arab Spring
In the following we provide a brief historical overview of Egyptian politics and the civil unrest

in Egypt that began as part of the Arab Spring.

F.1. Historical and Political Background
Egypt had been under what was effectively one-party rule since the 1952 coup that remove King

Farouk from power. The ruling political party, originally named Liberation Rally, transitioned to
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the politically centrist National Democratic Party (NDP). The NDP ideology centered around
modernist and anti-Islamist, and members were secular elite, bureaucrats, and regime cronies.
Hosni Mubarak rose to the head of the NDP movement in 1981. In addition to the NDP, the
Egyptian military sustains power and influence in the political arena. The military also has a vast
presence in civilian industry, making it wealthy and opposes Islamist rule.

Egypt’s main opposition to the NDP’s rule was in the Islamist movement, whose main social
organization is the Muslim Brotherhood (MB). The MB’s ideology centers around a literal in-
terpretation of scriptures and advocates a return to idealized Islamic society. MB’s followers are
urbanized middle and lower classes. The MB was outlawed in 1954 connected to the assassination
attempt of then-president Nasser with many influential leaders of the movement jailed. From the
1970s, leaders were freed, and MB moved towards an official political party as many leaders were
released from prisons. By the 2005 elections, MB gained approximately 20 percent of the seats in
the Egyptian parliament by running candidates as independents, making them a force within Egyp-
tian society and politics, despite the state denying that their existance. Furthermore, Mubarak’s
regime took a vigorous position against Islamic investment companies. This served as a severe
attack on the MB and its largest source of finance; more than 40% of the owners of the Islamic
investment companies were MB members and supporters.

F.2. The Egyptian Arab Spring
We can divide Egypt’s Arab Spring into four stages: (I) the lead up to and then fall of Mubarak,

(II) a period of rule by the Egyptian Military, (III) rule by Islamist President Mohamed Morsi, and
(IV) the fall of President Morsi and the return to power by the military, the latter of which is the
focal point of our empirical exercise.

Phase I: Fall of Mubarak. Under Mubarak’s rule, and particularly in the latter stages, NDP
members acquired vast wealth while the civilian population stagnated Following the removal of
Tunisian President Bin Ali in early 2011, the fervor against privileged elites and ruling parties
in North Africa and the Middle East grew. This led to thousands of protesters congregating in
Cairo’s Tahir Square in a public demonstration against the Mubarak regime organized by young
middle-class Egyptians, rather than an Islamist opposition. The MB later encouraged its members
to participate without invoking the MB’s Islamist slogans or ideology. After the initial protest,
demonstrations continued, growing in size to to 50K on January 28, and by February 1 to over
500K protesters in Tahir Square alone. In reponse, on the evening of February 11, Mubarak
resigns and hands over power to the military. After this handover, protests continued until relative
stability in mid-March. The first phase of Egypt’s Arab Spring ended on April 16, 2011, when an
administrative court dissolved the NDP on charges of corruption and seized its assets.

Phase II: First phase of military rule. Directly after the uprising, the Supreme Council of the
Armed Forces (SCAF) of the military faced a dilemma. The SCAF had to decide either to proceed
to elections to end their post-revolutionary rule, or slow down the electoral timetable and prioritize
the writing of a new constitution. Ultimately, the SCAF decided to hold parliamentary elections
before drafting a new constitution. The decision to hold election first was in part a response to
continuing protests by Egyptian citizens. The MB also rallied behind plan to hold parliamentary
elections prior to drafting a new constitution. In the ensuing elections, the MB fields brands it’s
political organization and the Freedom and Justice Party (FJP), and it’s presidential candidate is
Mohammed Morsi. Results of the first round of the election announced on May 28 and the results
of the runoff election announced on June 24.
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Phase III: Rule of Mohammed Morsi. Mohammed Morsi narrowly won the parliamentary
elections against former General Ahmed Shafiq with 51.7% of the vote. However, the constitution
imposed by the SCAF during their time in power, left Morsi with limited power. On August 12,
2012, Morsi revokes the interim rules imposed upon him, transferring power back to the president,
giving himself absolute legislative authority. Over the early stage of Morsi’s rule he continually
struggled to assert power over the military. In response, and to further provide himself power,
he removes 5 key military figures over the month of August 2012 and tensions between the two
continue to rise.

Public opposition to Morsi began building in November 2012 when, wishing to ensure that
the Islamist-dominated constituent assembly could finish drafting a new constitution, the president
issued a decree granting himself further power. At the same time, critics claimed he had mishandled
the economy and failed to deal with the very issues that led to the uprising that brought him to
power. Continuing calls for rights and social justice led to an accelerated decrease in the popularity
of Morsi over the next few months. As his popularity continued to dwindle, a referendum passed
a new constitution on December 23, promoting political Islam Citizens responded to the new
constitution with alternating protests in Tahir Square, rotating between pro- and anti-Islamist
movements.

Phase IV: Fall of Morsi and return to military rule. On June 26, 2013, Morsi delivers a
divisive address to defuse growing defiance to his rule. This leads to larger protests in the following
days involving two sets of protesters, pro- versus anti-Morsigroups, in different locations across
Egypt. On July 1, in response to the growing tension and civilian unrest the military issues an
ultimatum to Morsi to call an early election. On July 2, Morsi refuses to step down. On July 3, the
Egyptian Military overthrows Morsi’s regime in coup, and anti-military intervention protests grow.
By July 24, the military encourages pro-military intervention protests to counteract the opposition
protest to their takeover. From July 27 to mid-August, large demonstrations take place from both
sides.

G. Constructing the Data on the Egyptian Protests
G.1. Reconstructing the Dataset of Borge-Holthoefer et al. (2015)

The data used in our empirical analysis is a reconstruction of the data originally used in Borge-
Holthoefer et al. (2015) who document opinion dynamics about the Egyptian protests over the
Summer of 2013. They collect a sample of all Arabic language tweets from the Twitter API
over the June 21, 2013 to September 30, 2013. Then tweets relevant to Egypt and the protest
movement were identified by constructing over 100 queries that included keywords and hashtags
covering aspects of Egyptian politics, government and the protest movement.

Twitter’s terms of use prevent researchers sharing Twitter data either directly or by posting
the raw data online. However, authors can provide the ’Tweet-IDs’ - a numerical identifier - and
numeric ’User-IDs’ - which uniquely identify Twitter user profiles - that were used in their research.
After obtaining the IDs, we then performed a process known as ‘Tweet Hydration’ to pull the
tweets and user-info with any associated meta-data using software created by the Documenting the
Now project (https://www.docnow.io/).31 This process involves a process of repeatedly querying

31The original Tweet IDs and User-IDs along with the codes that perform the tweet hydration process are available
in our replication package.
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the public facing Twitter API and requesting the associated meta-data for either a Tweet-ID or
User-ID.

The API returns the complete data about each tweet or user from the query provided that the
tweet or user profile has not been deleted or taken down from the platform. Importantly for our
application, the returned data includes the textual content of the tweet, date and time posted and
the user-ID. When returning information about each user, the API returns the information at the
time the API query was made - thus the username, friends and follower counts as measured in
December 2020.32

G.2. Inferring Political Affiliation of Twitter Users
We briefly describe the process undertaken by Weber et al. (2013) to label 20,886 Egyptian

Twitter users by their political affiliation, which we use as training data to classify each of Twitter
users in our dataset. Starting with a set of manually labelled Twitter users, the authors collect
data on other users who interact with these accounts. Table G.2 contains the list of the seed users.
For each of the seed users, their most recent 3,200 tweets extracted from the Twitter API and
then the user meta-data of up to 200 retweeters of each tweet were downloaded.33 From this set of
retweeters, only those who’s location could be identified as being located in Egypt were retained
in the sample.34 The remaning Egyptian residing users were classified as Islamist or Secularist
according to their retweeting behaviour: A user who retweeted nI distinct Islamist seed users and
nS distinct Secular seed users over two time periods (January and March 2013) is classified as a
political Islamist if nI/(nI + nS) > 0.5.

Table G.1: Seed users and their political affiliation.
Secularists Islamists

Screen Name Twitter Handle Screen Name Twitter Handle
Mohamed El Baradei @ElBaradei Muhammad Morsi @MuhammadMorsi
Alaa Al-Aswany @alaaaswany Fadel Soliman @FadelSoliman
Ayman Nour @AymanNour Essam Al Erian @EssamAlErian
Wael Abbas @waelabbas Almogheer @almogheer
Belal Fadl @belalfadl Hazem Salah @HazemSalahTW
Dr. Hazem Abdelazim @Hazem_Azim Khaleed Abdallah @KhaleedAbdallah
MohamedAbuHamed @MohamedAbuHamed Melhamy @melhamy
HamzawyAmr @HamzawyAmr Dr Mohamed Aly @dr_mohamed_aly
E3adet Nazar @E3adet_Nazar Mustafa Hosny @MustafaHosny
GameelaIsmail @GameelaIsmail El Awa @El_Awa
shabab6april @shabab6april
waelabbas @waelabbas

Figure G.2 shows the users’ political affiliations and links between them based on a “snowball”
sample of a randomly drawn user and her neighbors, neighbors’ neighbors, etc. of the original
network of users (Goodman, 1961). A clear separation between densely connected clusters of users
with the same political affiliation can be seen with only a few links across these clusters.35 This
indicates that users are mainly connected with other users with the same political views.

32To the best of our knowledge there is no way to get the meta-information for each user retroactively (i.e. their
2013 values).

33These are the quantity limits are imposed by the Twitter API in early 2013.
34User locations where determined by their self reported location in their Twitter meta-data or by references to

place names in these users own tweets - which Weber et. al. collected and passed through Yahoo Placemaker.
35The hierarchical structure illustrated in the network is mainly due to the nature of the “snowball” sampling
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Figure G.1: The fraction of Islamist versus secular users over the sample period.

User Type Islamist Secular

Figure G.2: Users’ political affiliations and links based on a “snowball” sample of a randomly drawn user and her
neighbors, neighbors’ neighbors, etc. of the original network of users (Goodman, 1961).
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H. Bayesian Estimation: Prior distributions and MCMC proce-
dure

We specify the prior distributions as follows: θ ∼ N (0, σ2θ), ρ ∼ N (0, σ2ρ), β ∼ N (0,Σβ),
τ ∼ N (0, σ2τ ), κ ∼ N (0, σ2κ), ϕ ∼ N (0,Σϕ), zi ∼ N (0, σ2z), and σ2z ∼ IG

(
ν0
2 ,

χ0

2

)
, where N and

IG are normal and inverse gamma conjugate priors. We choose the hyperparameters to make the
prior distributions relatively flat and cover a wide range of parameter space. Specifically, we set
σ2θ = σ2ρ = σ2τ = σ2κ = 10, Σβ = 10 · I|β|, Σϕ = 10 · I|ϕ|, ν0 = 2.2 and χ0 = 0.1. Given the above
prior distributions and the composite likelihood function of (24), we can derive the joint posterior
distribution of Θ and z. Since it is difficult to simulate draws from this high-dimensional joint
posterior distribution, we implement the Metropolis-Hastings-within-Gibbs algorithm to simulate
draws sequentially from the conditional posterior densities in the following steps:

1. simulate the random variable zi using the Metropolis-Hastings (M-H) algorithm based on
p(zi|s, G,Θ) for i = 1, . . . , n.

2. simulate σ2z using the conjugate inverse gamma conditional posterior distribution.

3. simulate θ using the M-H algorithm based on p(θ|s, G, z,Θ \ θ).

4. simulate ρ using the M-H algorithm based on p(ρ|s, G, z,Θ \ ρ).

5. simulate β using the M-H algorithm based on p(β|s, G, z,Θ \ β).

6. simulate τ using the M-H algorithm based on p(τ |s, G, z,Θ \ τ).

7. simulate κ using the M-H algorithm based on p(κ|s, G, z,Θ \ κ).

8. simulate ϕ using the M-H algorithm based on p(ϕ|s, G, z,Θ \ ϕ).

I. Parameter Recovery Analysis
In this section, we conduct a Monte Carlo simulation study that attains two complementary

objectives. On the one hand, it demonstrates that the proposed Bayesian MCMC estimation based
on the composite likelihood function of (24) and the case-control approach described in Subsection
5.1 can indeed recover true parameter values. As an interesting side benefit of this exercise, we also
confirm the direction of estimation bias observed in Tables 2 and 3 when individual unobserved
heterogeneity (random effect) is ignored. On the other hand, the Monte Carlo simulations also
provide support to the conjecture that underlay our theoretical analysis of the LIL scenario. More
specifically, it shows that limit distribution µ̃η(·) defined in (20) provides a good approximation of
the invariant behavior of the process under limited information and therefore can be suitably used
as the likelihood for estimation in this context.

We set the number of Monte Carlo repetitions to 300. In each repetition, we generate the
artificial networks Gt and the action profiles st through a data generating process (DGP) that
mimics the dynamic process introduced in Subsection 2.2 for a setup with a number of nodes
n = 3, 000. In such a DGP, we generate the individual types γi from an expression of the form
βxi + τzi, where the variables xi represent observed individual characteristics that are generated
from a mixture of normal distributions (specifically, two-fifths of the values are generated from a

procedure.
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N (−4, 36) and three-fifths from N (4, 36)), while the variables zi represent unobserved individual
random effects generated from a standard normal distribution, i.e. zi ∼ N (0, 1). The coefficients
β and τ are set to 0.5. Then, the linking costs are determined through the expression ζij =
ϕ0 + h(xi, xj)ϕ1 − zi − zj , where we set h(xi, xj) = |xi − xj | and the coefficients ϕ0 and ϕ1 are
fixed equal to 2 and 1, respectively. The true values of the local spillover effect θ and the global
conformity effect ρ are set to 0.05 and 0.001 respectively, and the parameter η of the logistic
disturbance is normalized to 1. Finally, for the LIL scenario, we fix the true rioting cost parameter
κ to 1.5 and the belief weight φ to 0.4.

To generate the artificial data, we implement an iterative process that simulates the choice of
individual network links and actions with the corresponding conditional probabilities. That is, in
each iteration an individual is chosen at random for the option to update her network links or
action – and, in the LIL scenario, as well as her beliefs – conditionally on the network links and
actions chosen by others in the previous iteration. We run this iterative process sufficiently long
and treat the last realization of the network and action profiles from this iterative process as our
artificial data.

Next, we describe the implementation of this iterative process in more detail. On the one
hand, to update the networking decisions of any given individual i, we use the following conditional
probability for her network links ij:

µ(aij = 1|s, G−ij) =
exp(aij(θsisj − ϕ0 − |xi − xj |ϕ1 + zi + zj)

1 + exp(θsisj − ϕ0 − |xi − xj |ϕ1 + zi + zj)
.

And, in order to speed up the simulation, we take advantage of the conditional independence of
network links,36 to update the choice of all i’s links {aij}nj=1 synchronously. On the other hand, to
update the action choice si of any given individual i, the details of course depend on the scenario
under consideration. For the GI scenario, we use the following conditional probability for each
action si:

µ(si = 1|s−i, G) =
exp(βxi + τzi + ρ

∑
j ̸=i sj + θ

∑n
j ̸=i aijsj)

2cosh(βxi + τzi + ρ
∑

j ̸=i sj + θ
∑n

j ̸=i aijsj)
,

where note that, in order to avoid the identification problem discussed in Subsection 5.1, we do not
include the rioting cost κ in the GI scenario. Instead, to simulate the choice of action si for the
LIL scenario, we use the following conditional probability for action choice:

µ̃(si = 1|s−i, G,ψLIL) =
exp(βxi + τzi − κ+ ρ(n− 1)ψLILi + θ

∑n
j ̸=i aijsj)

2cosh(βxi + τzi − κ+ ρ(n− 1)ψLILi + θ
∑n

j ̸=i aijsj)
,

where ψLILi is generated from the induced stationary beliefs given in (9). Overall, the iteration
procedure described executes the dynamic process formulated in Section 2.2 for rates of adjustment
that lead individuals to update their network links and actions with equal frequency.

For estimation, we implement the Bayesian MCMC sampling with 30,000 iterations and drop
the first 5,000 iterations for burn-in. The results for the GI scenario are summarized in Table I.1
and the results for the LIL scenario in Table I.2. The values reported in the tables are the mean
and standard deviation of parameter estimates calculated across repetitions. In both tables, we see

36As explained in Subsection 5.1, it is important to bear in mind that the network links are not unconditionally
independent due to the interdependence of actions in the presence of a positive spillover effect θ.

26



that the estimation exercise can successfully recover the true parameter values when considering
the full econometric model with random effects (which is the true DGP). Moreover, in line with
the pattern observed in our empirical study, when random effects are ignored the estimate of the
local spillover θ is upward biased whereas that of the global-conformity parameter ρ is downward
biased.

Table I.1: Simulation results of the global information (GI) scenario.
with random effects w/o random effects

DGP Mean Std. Mean Std.

Local spillover (θ) 0.0500 0.0593 0.0108 0.1451 0.0072
Global conformity (ρ) 0.0010 0.0009 0.0004 -0.0003 0.0002

Individual preference
Individual characteristic x (β) 0.5000 0.5059 0.1285 0.4155 0.0677
Random effect (τ) 0.5000 0.4510 0.1911 – –

Linking cost
Constant (ϕ0) 2.0000 2.0145 0.0666 1.5291 0.0091
Diff. in characteristics |xi − xj | (ϕ1) 1.0000 1.0145 0.0064 0.8808 0.0034
Variance of random effect (σ2

z) 1.0000 1.1045 0.0353 – –

Number of nodes 3000
MC repetitions 300

Table I.2: Simulation results of the local information and learning (LIL) scenario.
with random effects w/o random effects

DGP Mean Std. Mean Std.

Local spillover (θ) 0.0500 0.0543 0.0124 0.0755 0.0067
Global conformity (ρ) 0.0010 0.0011 0.0005 0.0006 0.0003
Weight of local observation (φ) 0.4000 0.4580 0.1328 0.6255 0.1705

Individual preference
Individual characteristic x (β) 0.5000 0.5303 0.1770 0.5576 0.2040
Random effect (τ) 0.5000 0.5451 0.2394 – –
Rioting cost (κ) 1.5000 1.6169 0.6518 1.9963 0.7965

Linking cost
Constant (ζ0) 2.0000 1.9418 0.0633 1.4647 0.0084
Diff. in characteristics |xi − xj | (ζ1) 1.0000 1.0143 0.0056 0.8848 0.0032
Variance of random effect (σ2

z) 1.0000 1.1013 0.0350 – –

Number of nodes 3000
MC repetitions 300

J. Additional Empirical Results
In the following we provide additional estimation results when using a different sampling rate in

the case-control design discussed in Section 5.1. We find that by changing mi,o from 100+5
∑

j ̸=i aij
to 1000+ 5

∑
j ̸=i aij , the results in Tables J.1 and J.2 are qualitatively similar to those in Tables 2

and 3 in the main text. This illustrates that the results in Tables 2 and 3 are robust against using
alternative sampling rates in our case-control design.
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Table J.1: Robustness check for estimation results of the global
information (GI) scenario – by setting mi,o = 1000 + 5

∑
j ̸=i aij .

with random w/o random
effects effects
(1) (2)

Local spillover (θ) 0.1716∗∗∗ 0.2292∗∗∗
(0.0029) (0.0026)

Global conformity (ρ̌) 3.10e-6∗∗∗ 3.02e-6∗∗∗
(9.18e-8) (7.90e-8)

Individual preference

Female (β1) -0.0637∗∗∗ -0.0562∗∗∗
(0.0090) (0.0062)

Islamist (β2) 0.1007∗∗∗ 0.1103∗∗∗
(0.0055) (0.0037)

(Log) followers (β3) 0.0119∗∗∗ 0.0090∗∗∗
(0.0017) (0.0015)

Random effect (τ) 0.0059∗∗∗ –(0.0009)
Linking cost

Constant (ϕ0) 14.6860∗∗∗ 12.5847∗∗∗
(0.0226) (0.0088)

Same gender (ϕ1) -0.1629∗∗∗ -0.1873∗∗∗
(0.0161) (0.0073)

Same religiousness (ϕ2) -0.0781∗∗∗ -0.0011
(0.0082) (0.0061)

Diff. in followers count (ϕ3) 0.0858∗∗∗ 0.0987∗∗∗
(0.0032) (0.0027)

Variance of random effect (σ2
z) 2.0719∗∗∗ –(0.0175)

Sample size (# of nodes) 225,578

Notes: For the purpose of identification, we replace ρ
∑n

j ̸=i sj with
ρ̌(n − 1)s̄ and drop κ in the GI scenario. The parameter estimates
reported in this table are the posterior mean and the posterior standard
deviation from the Bayesian MCMC sampling procedure. The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density
interval (HDI) of the corresponding draws does not cover zero.
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Table J.2: Robustness check for estimation results of the lo-
cal information and learning (LIL) scenario – by setting mi,o =
1000 + 5

∑
j ̸=i aij .

with random w/o random
effects effects
(1) (1)

Local spillover (θ) 0.0709∗∗∗ 0.1601∗∗∗
(0.0036) (0.0025)

Global conformity (ρ) 2.36e-6∗∗∗ 1.71e-6∗∗∗
(5.15e-8) (3.88e-8)

Weight of local observation (φ) 0.0961∗∗∗ 0.0802∗∗∗
(0.0050) (0.0040)

Individual preference

Female (β1) -0.0565∗∗∗ -0.0523∗∗∗
(0.0112) (0.0087)

Islamist (β2) 0.1144∗∗∗ 0.1181∗∗∗
(0.0063) (0.0047)

(Log) followers (β3) 0.0059∗∗ 0.0032∗∗
(0.0020) (0.0015)

Random effect (τ) 0.0055∗∗∗ –(0.0004)
Rioting cost (κ) -0.2951∗∗∗ -0.3065∗∗∗

(0.0113) (0.0085)
Linking cost

Constant (ϕ0) 14.6812∗∗∗ 12.5650∗∗∗
(0.0226) (0.0094)

Same gender (ϕ1) -0.1655∗∗∗ -0.1947∗∗∗
(0.0148) (0.0087)

Same religiousness (ϕ2) -0.0776∗∗∗ -0.0038
(0.0071) (0.0065)

Diff. in followers (ϕ3) 0.0871∗∗∗ 0.0990∗∗∗
(0.0033) (0.0025)

Variance of random effect (σ2
z) 2.1127∗∗∗ –(0.0205)

Sample size (# of nodes) 225,578

Notes: The parameter estimates reported in this table are the pos-
terior mean and the posterior standard deviation from the Bayesian
MCMC sampling procedure. The asterisks ***(**,*) indicate that the
99% (95%, 90%) highest posterior density interval (HDI) of the corre-
sponding draws does not cover zero.
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